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As behavioral scientists, we're in the business of understanding
pieces of behavior. Everyone has his or her favorite types of behaviors,
oftentimes things that simply derive from personal interest—we are
fascinated by language or sport or animals and somehow contrive to
make those into experimental topics. Apart from our idiosyncratic
preferences we also bring our intellectual preferences, our
assumptions about the kinds of explanations we expect to work. And
although our theoretical positions are reasonably explicit, we also have
metatheoretical positions that are typically somewhat hidden.
Nonetheless, they sit implicitly behind what we do. Whether we are
connectionists or computationalists or direct realists, the inherent
philosophies of those positions dictate the kinds of problems we study
and the kinds of variables by which we choose to define them. Our
metatheories tell us what we think ought to be important.

But that’s not the end of how we frame problems. In designing
our studies, we still have a number of choices to make. Some of those
choices are dictated by the requirements of the analyses that we’ll
use—repeated measures or factorial designs, randomized or blocked
trials. Unlike our theoretical and metatheoretical positions, we tend to
think of analyses as objective and benign with respect to intellectual
assumptions. To be sure, all analyses assume criterial characteristics of
the data that render the analysis in question legitimate. But we tend to
think of those assumptions as mathematical. An important lesson of the
chapters in this volume, however, is that our statistical analyses buy
into intellectual assumptions as well. As you'll see, what we analyze and
how we analyze it entails assumptions about the kinds of things that

exist and assumptions about how those things can fit together. The
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chapters show us how we might begin to change the way we
understand the very nature of those pieces of behavior that interest us.
At the very least, these chapters show that analyses that acknowledge
the dynamical nature of certain behaviors reveal a good deal of rich
structure that cannot be extracted with more familiar analyses.

Consider Figure 1.1, which illustrates a few of the many different
kinds of patterns of data that behavioral scientists encounter. Panel A
shows distributions of the kind that we assume are typical of our
experiments. Some manipulation increased the likelihood of larger
responses, although, in this case, with greater variability among the
responses. Consequently, the means of the two distributions are
numerically different but the variances are such that there is
considerable overlap between the two distributions. Conventional
analyses allow us to assess the extent to which the variability seems to
be systematic (i.e., due to the manipulation) or random (e.g., due to the
vagaries of individual differences among people) in order to determine
whether those means are different enough to be reliable.

The remaining panels show data of the kind considered in these
chapters. Whether they fit this conventional characterization is an issue.
Panel B, for example, shows two distributions that appear to be of the
same general sort as panel A. Distribution 2 is a little more variable
than Distribution 1, but in this case their peaks are in the same location.
A closer look, however, suggests a subtle difference. The mean of
Distribution 2 is larger than the mean of Distribution 1, and by the same
amount as in panel A. But this time the increase is not due to a
straightforward, overall addition. There appears to be a stretching of

the high end of the distribution so that more large values get included
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Figure 1.1. (A) Two normal distributions with different means and variances. (B) A normal
distribution (solid line) and a distribution with a stretched “tail” (dashed line). (C) A time
series. (D) Two time series with identical summary means. (E) Two time-ordered velocity x
position profiles. (F) Categorical responses with different orders of presentation (indicated by

the arrows).

in the calculation of the mean (Moreno, 2001). Is it appropriate to say
that the means of these two distributions differ? The central tendency is

at the same value. Eliminating values of the dependent variable that are
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larger than a certain cut-off might eliminate this tail but would that be
an accurate depiction of the consequences of this particular
experimental manipulation? Panels C-F show data for which the mean
may be an even less appropriate measure. They are all time-series of
one kind or another, depictions of individual responses being tracked
over time or, at least, over order of presentation. In panel C you can
see that the data are very noisy trial by trial. But there also appears to
be some kind of large-scale wavy pattern overlaid on this noise.
Summary statistics such as the mean and variance would be hard-
pressed to capture this (see Chapter 6 by Holden). Panel D plots two
time series together. The average position of the two series can be said
to be the same if we simply add up the values and divide by the
number of observations. But it is quite apparent that this single value is
not an appropriate characterization of either time series or of the
differences between them. Indeed, there is not really a single mean for
either series; the mean of each changes over time, making it “illegal” to
conduct conventional analyses. Panel E suggests that tracking the
coincident changes in two variables might be informative. There is
more to these data than a correlation could reveal. Whether small
values of X; go along with large or small values of X, depends on when
the observations occurred in the series. Finally, in panel F, two parallel
functions are displaced from one another, not as a function of the X
variable but as a function of whether that variable was encountered in
an ascending series or a descending series (indicated by the arrows).
There might be a temptation to average over the two presentation
orders so as to identify “the” transition point, or to have ignored order

altogether in a randomized presentation (but see Chapter 8 by Tuller).
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In this opening chapter, we have two goals. First, we’ll take one
measure that is common in cognitive psychology research and use it to
illustrate the kinds of intellectual assumptions that standard data
analyses embrace. Second, we’ll provide an overview of the issues that

are treated in detail in the individual chapters.

A BRIEF HISTORY OF DECOMPOSING PERFORMANCE INTO
COMPONENTS

Reaction (or response) time is the workhorse for exploring the
nature of cognitive systems. Traditional approaches have tried to
understand responses as the sum of component effects. While such
approaches allow that the intrinsic dynamics of components may be
complex, they severely restrict the kinds of interactions that can occur
between components. In particular, it is common to assume that
interactions between components must be linear. Traditional
approaches have gambled that the effect of each cognitive component
combines additively with the effects of other components, which
together define the shape of response time distributions. This brief
history tracks the payoff, so far, of this gamble.

Linear interactions mean that the effect of an unobservable
component can be recovered in an overall measure like response time
because each component effect spans a sub-interval of response time.
The overall finishing time of the same component doing the same job
will vary from occasion to occasion, however. Thus, the overall time
course of all components would appear, to an experimenter, as a

distribution of finishing times (like one of those shown in Figure 1.1A).
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The enterprise of decomposing response time performance into
component processes is an old one. In 1868, Donders proposed a
subtractive method for identifying stages of information processing. The
subtractive method was based on the idea that a stage could be
inserted into (or deleted from) a sequence of stages. Donders
hypothesized that a new stage would be added to accompany specific
modifications to an experimental task. Comparing response times from
two tasks could estimate the duration of the added stage.

The subtractive method was the preferred procedure for
revealing mental stages for decades (Wundt, 1874; Cattell, 1886;
Jastrow, 1890). It fell out of favor for several reasons. One criticism was
that task modifications are more likely to alter the entire sequence of
stages than to insert or delete individual stages (Kiilpe, 1895). Devising
an experimental manipulation that unambiguously introduced a new
processing stage proved to be the downfall of the subtractive method.

A more contemporary effort to identify component processes
adopted Donders’ assumption of additive finishing times plus
assumptions geared to the asymmetrical shape of response time
distributions. Empirical response time distributions typically have a
hyperbolic shape with an elongated, slow tail, much like the dashed-
line distribution in Figure 1.1B. The slow tails of response time
distributions resemble exponential distributions (Christie & Luce, 1956;
McGill, 1963) and the fast tails resemble the left half of Gaussian
distributions. Christie and Luce hypothesized that empirical response
time distributions are the intertwining of an exponential distribution

and a base distribution of an unspecified form.
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Hohle (1965) suggested that the form of the base distribution was
Gaussian and indeed the convolution of an exponential and a Gaussian
distribution can approximate very closely the shape of empirical
response time distributions (Luce, 1986). Based on this idea, response
time distributions are the sum of numerous component distributions
with similar variances plus an exponentially distributed component
with a much greater variance.

Hohle’s assumptions include Donder’s core assumption of
additivity, that the interactions between components are linear.
Consequently the shape of response time distributions should reduce
to three parameters. Two parameters, u and X, summarize the shape of
an underlying Gaussian distribution. u describes the location of the
Gaussian distribution along the time axis and X describes the extent of
the distribution’s spread. A single parameter, T, summarizes the
location and spread of the exponential distribution.

Different component processes can be inferred if the parameter
estimates systematically dissociate across experimental manipulations.
Some manipulated factors should selectively influence one distribution
(e.g., the exponential distribution) without affecting the other (e.g., the
Gaussian distribution). This strategy for identifying component
processes avoids one of the pitfalls of Donders’ subtractive method, the
requirement that two different tasks add (or delete) a stage of
processing. Hohle’s method requires that different conditions of the
same task influence the exponential and Gaussian parameters
independently.

As part of a model of response time performance, Hohle

assumed that the exponential distribution is the effect of a response-
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choice process and the Gaussian distribution is the sum of all other
processes (see also, Christie & Luce, 1956). The mapping of parameters
to component processes was merely intuitive, however. For example,
McGill (1963) had opposite intuitions. He assigned response-choice
and other decision processes to the Gaussian sum of processes and
suggested that the exponential distribution represents motor
processes.

Unfortunately these ex-Gaussian strategies (combining
exponential and Gaussian distributions) fared no better than Donder’s
subtractive method (Sternberg, 1969). Different factor manipulations
did not systematically discriminate among different component
parameters across experiments (Hohle, 1967; Gholson & Hohle, 1968a,
1968b). This outcome presents a problem because the ex-Gaussian
hypothesis combines so many assumptions. When results are
inconclusive, it is difficult, or impossible, to decide which assumption is
false. Another problem, pointed out by Sternberg, is that combinations
of many other distributions also approximate response time
distributions (see also Van Zandt & Ratcliff, 1995).

Sternberg (1969) realized that the core assumption that cognitive
systems are composed of successive stages could be isolated from
supplemental assumptions such as specifying the form of component
distributions. Sternberg stripped the assumptions regarding the nature
of cognitive systems down to their core and asked, “How do component
processes interact?”’—the recurring question in this brief history.
Sternberg proposed that if the component processes interact linearly
then there must exist some factors that when manipulated will

selectively influence different component distributions. If components
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interact linearly, then component distributions selectively influenced
by separate factors will combine additively.

Sternberg’s strategy of testing for linear interactions requires
experimental manipulations of two or more factors. If the influence of
one factor on overall performance is completely independent of the
influence of another factor—a statistically additive interaction—then the
two experimental factors relate to two different component processes.
Alternatively, if the influence of one factor is modulated by another
factor—a non-additive interaction—then both factors influence at least
one common component process.

Assessments of additive interactions between component
processes require estimates of component distributions that combine
additively. Appropriate estimates of component finishing times,
according to Sternberg (1969, p. 286), are arithmetic means. The mean
of a sum of component distributions is the sum of component
distribution means. Response time means, therefore, can be treated as
the sum of component means.

Unfortunately, Sternberg’s additive factors method has yet to
identify any component process unequivocally. Additive interactions
are the exception in cognitive studies. This situation could imply that
the right set of factors has yet to be identified. The right set of factors
could provide the necessary context to discover fundamental additive
interactions. However, there is no guarantee that such a set of factors
exists. Moreover, it may not be feasible to prove that such a set of
factors does not exist. Sternberg provided an elegant and scientifically

conservative test of the traditional assumption regarding the nature of
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cognitive systems. Unfortunately, the results have yet to answer
Sternberg’s question, “how do components interact?”

Following Sternberg’s lead, in some sense, the chapters in this
volume focus on the question, “how do components interact?”
Nonlinear dynamical systems provide another way to explore this
question. Nonlinear dynamical systems do not exclude the possibility of
linear interactions; linear interactions are special circumstances within
the range of possibilities of a dynamical system. Thus, modeling
response times, among other things, as a dynamical system is a very
general and conservative approach. There are fewer a priori
assumptions regarding the components of the system. Furthermore,

there are fewer restrictions on how components may interact.

THE CHAPTERS

The workshop focused on two types of analyses—recurrence
quantification and fractals—that seem particularly fruitful for behavioral
research. The general premises of these techniques are summarized in
the chapters by Webber and Zbilut (“Recurrence Quantification
Analysis of Nonlinear Dynamical Systems”) and by Liebovitch and
Shehadeh (“Introduction to Fractals”) and each is followed by
particular experimental implementations. Also included is an
illustration of what can be gained by treating an established
phenomenon dynamically from the start.

Recurrence Quantification Analysis

Much of the behavior of living systems is complex and seemingly

non-predictable. Nonetheless, aspects of this behavior can be counted

on to repeat. The bits that repeat may do so over long stretches,
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perhaps producing a pattern, or the recurrences can be quite short-
lived. Consider an activity like a square dance. Much of a dancer’s time
is spent synchronized with the group in a large and obvious pattern,
say, concentric circles alternately moving clockwise and
counterclockwise. Only occasionally and briefly does one dancer get
back together with his or her original partner. Both levels of
recurrence—the circular patterns of the group and the momentary
contact between partners—can be quantified and tell us something
additional about the activity.

The levels of recurrence in the “RQA Dance”!

as executed by
other kinds of particles may not be as obvious, particularly the rare
recurrences, but they are just as informative. And, it seems, the more
complex the behavior the rarer and less obvious the recurrences, and
the greater the need for ways to discover them. As noted by Webber
and Zbilut, “the degree to which those systems exhibit recurrent
patterns speaks volumes regarding their underlying dynamics.” Even if
we don’t have a recurrent behavior as obvious as dancing partners
holding hands, a system’s underlying dynamics are accessible. Picking
up on the theme that everything is connected to everything else,
Takens (1981) introduced a theorem allowing a behavior space to be
reconstructed from any measured variable. To be sure, a complex
system is ultimately characterized by a number of participating
variables. But these variables are necessarily coupled to one another

and, therefore, each reflects the behavior of the system. In keeping

! The metaphor of RQA as describing a dance of particles was first illustrated by the duo of M.
T. Turvey and Nobuhiro Furyama during a typically staid Turvey lecture at the University of
Tokyo in May, 2004.
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with our intuitions that behavior evolves over time, Takens’
reconstruction is accomplished through time-delayed copies of some
nominated variable. That is, some variable x is chosen as a preliminary
index of the system’s behavior and we track what happens to x over
time. But we also want to know how x behaves relative to itself at later
points in time, say, t plus a delay of d or ¢ plus a delay of 20 So the
original variable x becomes a dimension of the system in question and
each time-delayed copy becomes another dimension of the system.
Trajectories are traced through this multi-dimensional space and
recurrences are measured: Do the trajectories come together at a
point, do they travel together for a sequence of points, and so on? Each
of these becomes an objective indication of some aspect of the system’s
dynamics. An advantage here is that the analysis allows you to
characterize the dynamics of the system from the measurement of any
variable, not necessarily a variable that seems like it ought to be right
(what standard analyses refer to as face validity).

This technique is illustrated in Shockley’s chapter “Cross
Recurrence Quantification of Interpersonal Postural Activity.” He
exploits RQA in a line of research aimed at quantifying the
synchronization between two people who are engaged in a
conversation. You can appreciate the challenge this behavior poses.
What do you measure? The history of interpersonal synchrony is to
treat it as a phenomenon of social coordination and to look for overt
signs of that coordination. This means that the problem has been
addressed fairly subjectively. For example, researchers might examine
videotapes and look for signs of synchrony (e.g., similar gestures by a

talker and a listener). As rigorously objective as researchers try to be,
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they must still interject themselves into the process of identifying an
occasion of synchrony. Shockley and his colleagues have instead
chosen a behavior—the postural sway of the participants—that is not an
overt part of the act of conversing and used RQA to sift through the
trajectories and extract the recurrent patterns. This is unlikely to be a
behavior that people are controlling consciously. It changes “for free,”
pushed around by the fact that our heads are pretty massive sitting up
on top of the relatively skinny sticks that are our bodies. So when we
breathe and talk and gesture, those big heads move around, moving
the body’s center of mass, CM, along with them. The trajectory of the
CM is tracked over time, time-delayed copies of its trajectory can be
generated, and you’re on your way to generating a behavior space.
The subtle measures of RQA allow Shockley and colleagues to
manipulate the constraints on just how coordinated the joint behavior
is. They have people talk to each other or to someone else, at the same
time or in the course of taking turns, using words that differ in their
similarity, and so on—in order to uncover influences on the degree of
coordination. This means that motor behavior, a level of behavior that
some might like to relegate to the bin of basic behaviors that we can
take for granted, can be used as an index of language, something we
take to be one of our fanciest behaviors.

In the chapter on related work by Pellecchia and Shockley
“Application of Recurrence Quantification Analysis: Influence of
Cognitive Activity on Postural Fluctuations,” RQA is applied to a single
postural trajectory. This time, your big head is moved around not by
coordinating with another person but simply by standing while

directing some of your attention to another task. Here the emphasis is
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not so much on the objectivity to be gained—postural sway indexed by
the excursions of the center of pressure (COP) is a common measure in
some domains. But Pellecchia and Shockley point out that more
traditional postural measures are summary measures, for example, of
COP path magnitude and variability. But these summary measures turn
out to be insufficiently sensitive to the varied ways in which cognitive
attentional load can influence certain aspects of postural stability but
not others. They “do not reflect the dynamical properties of postural
control.” In particular, they miss the temporal structure of a COP time
series. One challenge is that posture data are what is called
nonstationary. No single summary measure adequately captures them
because the mean changes over time and the variability changes over
time (see Figure 1.1C). The notion of an average postural location
doesn’t make sense. But this nonstationarity also makes posture data
inappropriate for analyses that assume stationarity. RQA, in contrast,
makes no such assumptions about the way the data are distributed.
Pellecchia and Shockley deal with some of the technical aspects
of carrying out RQA. When you’re evaluating the RQA dance, what
qualifies as an instance of the two original partners having come
together? Do they actually have to touch hands or can they simply slap
hands or wave in the vicinity of each other? When you’re generating
your behavior space through time-delayed copies, what should the
delay be? How many dimensions define your hyper-space?
Pedagogically, our preferences is to illustrate it with three because we
can visualize three-space. But there are no such mundane constraints
on RQA. Pellecchia and Shockley suggest a kind of exploratory strategy

in which the RQA quantities are calculated for a range of parameter
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values (numbers of dimensions, size of time-delay), and then settle on a
value of the latter from a range that doesn’t have dramatic
consequences for the RQA measures. The upshot in the research they
describe is that RQA promotes a different understanding of what
attention does. In the particular experiment they described, for
example, summary measures of COP were all affected in the same way
by attentional demands, suggesting that attention causes a decrement
in postural control. The RQA measures, in contrast, yielded differences
that suggest a nuanced understanding of the ways in which postural
components (e.g., the front to back vs. side to side movements) might
be modulated by a stander in order to meet attentional demands.
Variability is something to be harnessed by the system to achieve a
goal.
Fractal Analyses

Most of the things that we need to measure tend to be irregular.
This is no less true when the things we measure are behaviors rather
than objects. Geometrically, this means that things are more like
coastlines than rectangles. As Liebovitch and Shehadeh point out in
“Introduction to Fractals,” this not only makes them hard to measure, it
makes the ruler that we use important. Quite surprisingly, the
measured size of the coastline depends on the size of the ruler. Smaller
rulers get into more of the nooks and crannies, thereby including more
stretches of coastline than would be the case with a large ruler that is
forced to bridge those gaps. So the level of resolution that we choose to
achieve in our measurement affects the values we get. Consider one
classic value that is typically used to characterize the behavior of a

system, its mean. The mean is a measure derived from a collection of
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property or performance values that all tend to distribute around this
more or less central value. It is considered a value that typifies the thing
being measured. But with irregular objects like coastlines, there really
is no typical value. The mean depends on the resolution of the
measurement and isn’t all that meaningful.

Subjectivity in measurement is certainly a problem to be
reckoned with. You can appreciate how standard assumptions about
normal distributions (most notably, more samples should lead to more
precision, not more stuff) will be inappropriate in such circumstances.
But so-called fractal objects, which are defined, in part, by this
dependency on measurement resolution, have an additional property
that makes them especially interesting. Fractal objects are self-similar,
that is, structure at the large scale (or the structure of behavior at the
large scale) is duplicated at the small scale: “...the statistics of the small
pieces are similar to the statistics of the large pieces.” This is so
whether we are talking about the structure at different scales of space
or at different scales of time. What happens within a square centimeter
mimics what happens within a square meter; what happens within a one
second window mimics what happens within a one minute window.
Self-similarity can reveal much about the dynamics of a system.
Depending on how the variability relates to the size of the window—a
relationship indexed by what is called the Hurst exponent—it tells you
whether an increase in the value of a measure taken now is likely to be
followed by an increase or a decrease in that measure taken later. In
essence, continuous dynamical processes manifest a kind of memory
without the logical attributions and storage metaphors we gravitate to

in the behavioral sciences.
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A respect for unfolding dynamics encourages the treatment of
order effects as entities of interest in an experiment rather than as
sources of contamination. This is illustrated by Holden in “Gauging the

Fractal Dimension of Cognitive Performance.” He uses a simple
repetitive time-estimation task to demonstrate the options for analyzing
a time series of response times. A participant attempted to produce a
sequence of equal intervals to mimic a presented target interval. Here
our interest is not so much in accuracy as in the kind of process that
produced the performance that was obtained. The way in which the
variability changes over time is the source of the insight. Holden
provides a nice intuitive metaphor here. If the interval estimates did not
vary, then a graph (of value over time) would yield a one-dimensional
straight line. To the extent that the time series is messy, it more closely
resembles a two-dimensional plane. The fractal dimension of the time
series can be calculated from the time series, with a value of 1.5
indicating randomness and 1.2 indicating pink noise, a time-scale
dependent variability. It is, of course, more complicated than this, since
order matters. Shuffling the data yields white noise because you’ve
destroyed the fractal structure, the pattern of variability at short time
scales that is echoed at ever-longer time scales.

Holden’s chapter also contains several caveats for conducting
these kinds of nonlinear analyses. Caveats are necessary because there
are options and we are sensitive to the fact that options often entail
assumptions. Let’s consider a few that routinely arise due to the
practical finiteness of data collection. Ordinary statistics tell us that
outliers are a problem and should be eliminated. Sympathy for

dynamics burdens us with the knowledge that outliers are not

18



Why nonlinear methods?

necessarily produced by an aberrant procedural hiccup. We have to
assess the extent to which they would dominate the analysis. You also
have to be careful that the analysis is not dominated by spurious trends
(e.g., a stretch of linearity) in the finite data set that might be part of
something else if the data collection had continued. So the longer the
time series the better in order to see the cascading structure of varied
time scales. But since our interest is in emergence over time, we cannot
pretend that data collected over several days are the same as data
collected in one sitting. Finally, with all of these options, you’re bound
to come up with varied characterizations depending on which choices
you made. So you need to conduct more than one analysis type (e.g.,
spectral and dispersion analyses) as converging operations.

In her chapter “1/f Dynamic in Complex Visual Search: Evidence
for Self-Organized Criticality in Human Perception” Aks applies this
perspective to visual search behavior, the eye movements that people
engage in when looking for a specific small detail amidst a clutter of
distracting detail. These movements appear quite haphazard. Our eyes
dart back and forth, up and around, in a mix of short jumps and long,
often landing on the same places time and again. We do not follow a
systematic path, say, from upper left to lower right that would
seemingly guarantee that the target would be encountered. Our
behavior doesn’t show in any obvious way that we remember where we
looked in vain before. Yet the repetitive, jerky movements are

surprisingly effective—we find our friend in the crowd; we select the
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perfect bolt from a stash of culch.? Indeed, the ordinary conditions
under which visual search happens don’t really favor the tidy, thorough
search. We don’t have all the time in the world; our targets or our goals
are often on the move.

At issue in this research domain is what guides visual search. If
eye movements truly were random, we would have to conclude that
they were driven by something other than what the system had done
before, that there was no real role for memory. But it is in the
superficially random noisiness that a fractal analysis uncovers subtle
structure. By quantifying how the noise changes over time we gain
insight into the kind of system that has produced that noise. Presenting
subjects with a difficult search task (looking for a target with a
conjunction of features, not just one) reveals that a bout of scanning has
its own internal history. What we do early in the bout does indeed
influence what we do later in that same bout. But this dynamic history is
quite different from more standard characterizations of memory that
entail a certain degree of address-specific tagging. It implicates more
subtle contingencies, indexed by what is called 1/f behavior.

The final chapter by Tuller does not incorporate either
recurrence or fractal analyses. Instead, she illustrates the advantage of
a general dynamical attitude in designing an experiment, with
subsequent opportunities for new interpretations of seemingly well-
understood results. The generality is especially apparent in that this is

strictly a perception experiment. The relevant series is not of the timing

% In the New England vernacular, culch refers to items that may (or may not) come in handy
someday.
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of the responses but of their content—why should a speech token sound
like one syllable versus another? Tuller tackles the classic phenomenon
of categorical perception. Syllables are synthesized to vary
incrementally on some acoustic property. Even though each syllable
token is defined by a different value taken from a wide range of the
acoustic property, each is heard as either one syllable or the other;
they belong to one syllable category or the other. Categorical
perception has historically been treated statically: You hear a token
and its maps better onto one representation than another. But Tuller
shows that thinking of the process as dynamical—with stable, attractive
states that change abruptly—focuses the experimenter on finding what
encourages those nonlinear shifts from one stability to another.

Tuller’s major caveat is that some standard methodological
choices, most notably, randomizing the order in which stimuli are
presented, obscure the dynamics of a system. In a now-familiar refrain
for this volume, she notes that far from being a nuisance that has to be
controlled, order effects allow a system’s dynamical signature to
emerge. A dynamical perspective requires that the stimuli be
presented in order, for example, alternating increasing and decreasing
levels of the acoustic property. This allows an interpretation of the
acoustic property as a control parameter rather than as a cue. Now the
categorical shift can be mined. Does it happen at the same value of the
control parameter in one order as the other (see Figure 1.1F)? Does the
syllable you first hear persist? Or do you switch to the other syllable at
a low level on the way up but a high level on the way down? Tuller
notes that all three of these patterns have been observed and one or the

other can be encouraged. Most notably, the abrupt change from one
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syllable to another, from one stable state to another, comes about
during situations of instability. What had been unanimity of responses
becomes somewhat mixed. Such instability links this perceptual
phenomenon to the general phenomenon of self-organized pattern
formation. This linkage allows one to write the differential equations
that “define systems with attractor properties that fit the observed
experimental data.” That is to say, the linkage is far from metaphorical.
A perception system is modeled in the same way, with the same
ontological status, as an action system, clearly a different direction from

the traditional treatment of categorical perception.

CONCLUSIONS

Behavioral scientists study the actions of humans and animals.
Some of these actions make sense at the level of the individual and
some emerge only in a social setting. As we noted at the outset, we
make a number of choices in conducting our studies. The practical
issue of what kind of equipment we have, how many participants are
available, and so on, are supplemented by the kinds of analyses we
know how to do and the kinds of data we collected to put into those
analyses. We have suggested that such choices are not necessarily as
benign and objective as we would like to believe. Do we try to avoid
data like those shown in panels B-F of Figure 1.1 because they are
messy? Or do we try to contrive our manipulations to produce those
kinds of data because they allow the richness of dynamical systems to
be seen? The following chapters are of a mind that we should not be

afraid of variability. It may well be the driving force of nature.
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