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Control of a stable standing posture is requisite to many

everyday actions. During upright standing, the body undergoes

continuous, low-amplitude sway. These spontaneous postural

fluctuations are often indexed by the center of pressure (COP). The

COP is the location of the net vertical ground reaction force and is

calculable from the forces and moments measured by a device called a

force platform. During upright standing with equal weight bearing on

each foot, the COP is located midway between the feet. The path

traversed by the COP over time reflects the dynamic nature of postural

control. Figure 3.1 depicts a typical COP path during 30 s of upright

standing on a compliant surface. The ease with which COP measures

can be obtained with a force platform provides a means to explore

factors that may influence postural control.

Figure 3.1.  A sample 30 s center of pressure (COP) profile. COP path is shown for an
individual standing upright with feet together on a compliant surface.
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An important aspect of many routine activities of daily living is

the ability to concurrently maintain an upright posture and perform an

unrelated cognitive task. For example, we often walk while talking.

Despite that such scenarios are commonplace, executing cognitive and

postural tasks concurrently is not without consequence. Numerous

studies have demonstrated changes in performance on either the

cognitive, postural, or both tasks when carried out simultaneously

compared to when the same tasks are performed separately (e.g.,

Dault, Geurts, Mulder, & Duysens, 2001; Kerr, Condon, & McDonald,

1985; Lajoie, Teasdale, Bard, & Fleury, 1993; Maylor, Allison, & Wing,

2001; Maylor & Wing, 1996; Stelmach, Zelaznik, & Lowe, 1990).

In a recent paper, Pellecchia (2003) examined the effect of

attentional demand on postural sway. COP was recorded as

participants stood on a force platform and performed cognitive tasks

that varied in attentional requirements. Attentional demand was

quantified using information reduction tasks modeled after those

described by Posner (1964; Posner & Rossman, 1965). An information

reduction task is one in which the required cognitive operation results

in a reduction of information from stimulus to response. The size of that

transformation is quantified by the difference in the amount of

information contained in the stimulus and the response. Posner

asserted that the attentional requirements of a cognitive task could be

manipulated by varying the processing demands of the task. For a set

of numeric tasks, Posner demonstrated a direct relation between task

difficulty and the magnitude of information reduced in carrying out a

task. Information reduction tasks have been an effective means of
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manipulating the attentional requirements of cognitive activity (for an

example, see Pellecchia & Turvey, 2001).

To examine the influence of attentional demand on postural

sway, Pellecchia (2003) adopted a conventional approach to data

analysis. Specifically, the mean magnitude and variability of the COP

path during upright standing were compared across a set of

information reduction tasks. This traditional method has been used

extensively in previous studies examining effects of various

experimental manipulations on postural control (for examples, see

Derave, De Clercq, Bouckaert, & Pannier, 1998; Gravelle et al., 2002;

Guerraz, Thilo, Bronstein, & Gresty, 2001; Polonyova & Hlavacka, 2001;

Vuillerme, Forestier, & Nougier, 2002; Vuillerme, Nougier, & Teasdale,

2000). Although well established, this approach to the analysis of COP

data is of limited usefulness. Summary measures of COP path

magnitude and variability do not reflect the dynamical properties of

postural control (Newell, 1998). In contrast, recurrence quantification

analysis (RQA), a relatively new analytical method, examines the time

evolution of data series (see Webber & Zbilut, Chapter 2). In recent

years, investigators have begun using RQA to explore the dynamics of

postural control. For example, Riley and Clark (2003) employed RQA to

investigate how changes in sensory information influenced the

temporal structure of spontaneous postural sway, and thereby to gain

insight into the adaptive nature of postural control. RQA is a useful tool

for identifying structure that is inherent in postural fluctuations but not

evident when using conventional methods of analyzing COP data. The

purpose of this chapter is to demonstrate the application of RQA to the

study of postural fluctuations during standing as a function of varying
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attentional demands of an unrelated, concurrent, cognitive task.

Following a description of the experimental method, we review the

results of the traditional analysis of COP data as previously reported by

Pellecchia (2003). Next, we employ the methods of RQA to examine the

dynamical properties of COP time series.

COGNITIVE ACTIVITY & POSTURAL CONTROL: THE EXPERIMENT

An AMTI Accusway System for Balance and Postural Sway

Measurement (Advanced Mechanical Technology, Inc., Watertown,

Massachusetts) was used to collect data. The Accusway System consists

of a portable force platform and SWAYWIN software for data acquisition

and analysis. The force platform produces six signals—three force

measures, Fx, Fy, and Fz, and three moment measures, Mx, My, and Mz,

where the subscripts x, y, and z denote medio-lateral (ML; side-to-

side), anterior-posterior (AP; front-to-back), and vertical directions,

respectively. SWAYWIN software uses the forces and moments to

calculate x and y coordinates of the position of the COP. The Accusway

System samples at a rate of 50 Hz. Therefore, a 30 s trial period yielded

1500 data points for the ML COP (position of the center of pressure in

the ML direction) time series and 1500 data points for the AP COP

(position of the center of pressure in the AP direction) time series.

The postural task consisted of standing on a 10 cm thick foam

pad that had been placed on top of the force platform, as shown in

Figure 3.2. The foam pad created a compliant surface, thereby altering

the somatosensory information available for postural control and

making the postural task more challenging than simply standing on a

firm, flat surface.
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Figure 3.2.  The experimental set-up used in the present experiment. Participants stood with
feet together, arms by side, and looking straight ahead at a blank wall. A foam pad was placed
on the force platform to create a compliant surface.

Three information reduction tasks—digit reversal, digit

classification, and counting backward by 3s—were used to vary the

attentional demands of the concurrent cognitive task. The amount of

information reduced in performing each task was determined using the

method described by Posner (1964; Posner & Rossman, 1965; see also

Note 1 in Pellecchia & Turvey, 2001). In digit reversal, the task was to

reverse the order of a pair of digits. For example, on hearing the
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stimulus 4, 7, a correct response would be 7, 4. The input contained 6.5

bits of information, and the output contained 6.5 bits of information.

Therefore, digit reversal was a 0-bit reduction task. In digit

classification, the task was to combine a pair of single digits into a

double-digit number and to classify that number as high (if > 50) or low

(if < 50), and odd or even. For example, the single digits 4, 7, combine

to form the double-digit number 47; correct classification would be low,

odd. The input contained 6.5 bits of information; the output contained 2

bits of information. Therefore, digit classification required 4.5 bits of

information reduction. In the counting back by 3s task, participants

were given a 3 digit number from which to start counting. Participants

were instructed to first recite the starting number, and then count

backward by 3s from that number. Correct responses to the stimulus

365 would be 365, 362, 359, 356, and so on. We determined that

counting back by 3s from a randomly chosen three-digit number

required approximately 5.9 bits of information reduction.

A pre-recorded audiotape provided stimuli for the digit reversal

and digit classification tasks. The audiotape consisted of pairs of

random single digits presented at a rate of 2 digits/s with a 2 s pause

between pairs. For the counting backward by 3s task, a different

starting number was selected for each trial. Starting numbers ranging

between 200 and 999 were chosen from a random number table. Prior

to data collection, participants practiced the three information

reduction tasks for a minimum of 15 s each while seated in a chair.

During the experiment, participants stood in stocking feet on the

foam pad that rested on the force platform. The force platform was

positioned approximately 2 m from a blank wall. Participants were
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instructed to stand with the feet together, the arms by the sides, and

with the eyes open and looking straight ahead. COP data were

collected under four cognitive task conditions: Quiet standing (i.e.,

performing no cognitive task), standing combined with digit reversal,

standing combined with digit classification, and standing combined

with counting backward by 3s. Participants performed two 30 s trials of

each condition, for a total of eight trials. The order of the four

experimental conditions was randomized. Data collection for each

participant’s first trial began 30-60 s after the participant assumed the

proper position on the force platform. For those trials in which standing

was combined with a cognitive task, force platform data collection

began after the participant voiced their first response. There was a 30-

60 s break between trials, during which time the participant remained

standing on the platform. Participants’ verbal responses to the

cognitive tasks were audiotape-recorded for subsequent analysis.

Practice and data collection together lasted approximately 30 min.

TRADITIONAL APPROACH TO ANALYSIS OF COP DATA

Data Analysis

SWAYWIN  software was used to calculate five dependent

measures: Total COP path length (LCOP), anterio-posterior (AP) and

medio-lateral (ML) COP range, and AP and ML COP variability. LCOP is

the total distance traveled by the COP over the 30 s trial period (see

Figure 3.1 for a visual display of LCOP). AP COP range and ML COP

range are the differences between the two extreme position values in

the respective directions. AP and ML COP variability are the standard

deviations of the COP in the respective directions. Means of those
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quantities were calculated for the two trials in each experimental

condition, and the means were used in all subsequent analyses.

Separate repeated-measures analyses of variance (ANOVA) were used

to determine the effect of cognitive task condition on each COP

measure. Pearson product-moment correlations examined the relation

between bits of information reduced and each dependent variable.

To examine performance on the cognitive tasks, the number of

errors was determined for each trial by listening to the audiotape

recording of participants’ responses. Error rate was calculated as the

number of errors divided by the total number of responses for each 30

s trial. Error rates were averaged for each participant’s two trials in

each experimental condition. The mean error scores were used in

subsequent repeated measures ANOVAs to examine cognitive task

performance. Post-hoc analyses were conducted using least significant

difference pair-wise multiple comparison tests.

Results of Traditional Analyses

The effects of attentional requirements on postural sway and

cognitive task performance were previously reported (Pellecchia,

2003) and are summarized in Figure 3.3. Repeated-measures ANOVAs

revealed a main effect of cognitive task condition on LCOP, F(3, 57) =

8.09, p < .001, as shown in Figure 3.3a. Figures 3.3b-e depict similar

results for the other four COP measures. Separate ANOVAs revealed a

main effect of cognitive task condition on AP range F(3, 57) = 9.84, p <

.001, ML range F(3, 57) = 3.03, p < .05, and AP variability, F(3, 57) =

5.70, p < .01. Post-hoc tests showed sway measures of LCOP, AP range,

ML range, and AP variability were greater for the counting back by 3s
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Figure 3.3.  Five summary measures of the center of pressure (COP) as a function of cognitive
task condition. (a) Total length of the path of the center of pressure (LCOP); (b) Range of COP
motion in the anterior-posterior (AP) direction; (c) Range of COP motion in the medio-lateral
(ML) direction; (d) standard deviation (SD) of AP COP motion; and (e) SD of ML COP motion.

task than for the other three cognitive task conditions. In addition, AP

sway range was greater for digit classification than for quiet standing.

For ML variability, the main effect of cognitive task condition

approached statistical significance, F(3, 57) = 2.35, p = .08. Pair-wise
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comparisons suggested greater ML variability for the counting back by

3s task than for digit reversal (p < .05) and quiet standing (p = .06).

As noted previously, digit reversal, digit classification, and

counting back by 3s required 0, 4.5, and 5.9 bits of information

reduction, respectively. Inspection of Figures 3.3a-e suggests that

postural sway was directly related to the magnitude of information

reduced for the cognitive tasks. Separate correlation analyses

confirmed this relation between bits of information reduced and each

COP measure. Specifically, Pearson correlation coefficients for LCOP,

AP range, ML range, AP variability, and ML variability were .79, .89,

.82, .89, and .97, respectively.

In the evaluation of cognitive task performance, repeated

measures ANOVA revealed a main effect of cognitive task on error rate,

F(2, 36) = 7.58, p < .01. The error rate for counting back by 3s (M =

0.113) was greater than error rates for digit classification (M = 0.026)

and digit reversal (M = 0.003).

To summarize, the traditional approach to analysis of COP data

revealed greater magnitude and variability of COP motion with higher

attentional demands of a concurrent, unrelated, cognitive task. Upon

further inspection of Figures 3.3a-e, the various COP measures appear

to provide redundant information. In fact, these measures are highly

correlated. Pearson correlation coefficients examining the relation

among mean values of the five COP measures ranged from .96 to .99.

Discussion of Results of Traditional Analysis

Considering the results of the traditional analysis of COP data,

one might assume that only a single measure of the COP need be

considered. That is, each summary measure of the COP suggested a
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similar conclusion about the influence of attentional requirements on

postural sway. More specifically, performing a concurrent cognitive

task was associated with increases in all five measures. Furthermore,

there were no apparent differential effects of attentional demands on

AP or ML COP motion.

A conventional viewpoint holds that the degree of postural sway

reflects performance of the postural control system. In individuals free

of neuromuscular or balance disorders, small amplitude and variability

of COP excursions is considered to indicate good balance, whereas

large amplitude and variability of COP motion is considered to indicate

poor balance. From this perspective, the observed increases in sway

magnitude and variability in the present experiment suggest that

carrying out a concurrent cognitive task compromises postural

stability. Consistent with this view and the traditional notion of attention

as limited capacity or limited processing resources, one might

conclude that counting backward by 3s while standing upright exceeds

an individual’s attentional capacity, and brings about a decline in

performance of the postural control system (Woollacott & Shumway-

Cook, 2002). This interpretation is intuitively appealing and broadly

held. On second blush, however, the notion that concurrent

performance of a fundamental motor task such as maintaining an

upright posture and a relatively simple arithmetic task could exceed

human attentional resources is somewhat suspect.

The traditional approach to the analysis of COP data provides

limited information about the postural control system’s response to

concurrent performance of an unrelated cognitive task. In particular,

summary measures of COP magnitude and variability do not inform
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about the temporal structure of the COP time series. Consider Figure

3.4, which depicts the AP COP and ML COP time series for the COP

profile shown in Figure 3.1. Using the methods of RQA, we can explore

the temporal structure of these postural fluctuations, and perhaps gain

further insight into changes brought about in the postural control

system by varying the attentional requirements of cognitive activity.
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Figure 3.4.  AP COP (top) and ML COP (bottom) times series for the COP profile shown in
Figure 3.1.
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RECURRENCE QUANTIFICATION ANALYSIS

RQA, a relatively new tool for the analysis of nonlinear dynamical

systems, can be used to identify subtle patterns of recurrence in a data

series (Webber & Zbilut, 1994, 1996; Zbilut & Webber, 1992; for a

detailed tutorial, see Webber & Zbilut, Chapter 2). Time-delayed

copies of a single scalar time series are used as surrogate variables to

reconstruct a higher dimensional phase space. Through examination of

the reconstructed phase space, RQA is able to detect system dynamics

that are intrinsic to, though not readily apparent in, the one-

dimensional time series. In the reconstructed phase space, the

distances between all possible vectors are determined and used to

create a distance matrix. Next, a recurrence matrix of recurrent points

is generated from the distance matrix. Recurrent points are those points

in the distance matrix that fall within a specified distance of one

another.

A recurrence plot is simply a graphical depiction of the

recurrence matrix. The recurrence plot is an autocorrelation plot of x(t)

with x(i) along the abscissa and x(j) along the ordinate. Only those

points that satisfy x(i) = x(j), defined as values of i and j that fall within a

specified radius or distance of one another, are plotted. Visual

inspection of recurrence plots may reveal patterns in the data not

evident from examination of the time series. RQA uses pattern

recognition algorithms (see discussion of quantification of qualitative

features below) to quantify the recurrence features depicted in

recurrence plots, and, therefore, is more objective than visual

inspection of recurrence plots.
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In the present chapter, we apply RQA to the COP data generated

by the experiment described above to examine the effects of cognitive

activity on postural fluctuations. An important characteristic of RQA is

that, unlike other analytic techniques, it does not assume data

stationarity. This is of particular relevance in the analysis of COP time

series, which have been shown to be nonstationary—drift in the first

(mean) and second (standard deviation) moments over time (Newell,

1998; Newell, Slobounov, Slobounova, & Molenaar, 1997; Schumann,

Redfern, Furman, El-Jaroudi, & Chaparro, 1995). In addition, RQA

requires no assumptions about data set size or distribution of the data.

RQA of the COP data from the present experiment was

performed using recurrence software available free of charge from

http://homepages.luc.edu/~cwebber/. Recurrence Quantification

Analysis version 6.2 was used to conduct the present analyses, but a

more recent version of the software is now available. The software

includes 20 programs for examining recurrence in a single time series

and cross-recurrence in two time series. All programs run in MSDOS,

requiring the user to have a basic knowledge of how to work in a DOS

environment. The README.TXT file is a valuable resource and should

be read by all first-time users of the software. Toward the beginning of

that file, programs are listed by purpose for which they are used. This

provides a useful guide for selecting an appropriate program. For

example, when the aim is to generate a recurrence plot, the user can

look under the heading “2 programs display recurrence plots” and

select from R Q D.EXE , which is used to generate recurrence

quantification plots for a single time series, and KRQD.EXE, which is

used to generate cross-recurrence plots from two different files. Later

http://homepages.luc.edu/~cwebber/
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in the README.TXT file descriptions of each program detail program

usage, input parameters that must be defined, and output that will be

generated. The section of the README.TXT file titled “Mathematical

Construction of the Recurrence Matrix” (see also Webber & Zbilut,

Chapter 2) is a particularly helpful tool for understanding the process of

RQA. In addition, near the end of the file, the creators of the software

discuss several important points to consider in conducting RQA.

We used program RQD.EXE (Recurrence Quantification Display)

to create recurrence plots. Figure 3.5 depicts recurrence plots for the

AP COP and ML COP time series shown in Figure 3.4. The data used to

generate these recurrence plots are available for download for the

reader who wishes to reproduce these plots. As noted above, points

plotted in the recurrence plot are those points determined to be

“neighbors” in the reconstructed phase space, that is, COP values that

are within a specified distance of one another. The basic features of

recurrence plots and our choices of parameter values used to generate

the plots with program RQD.EXE are explained below in the

subsections entitled Quantification of Qualitative Features of Recurrence

Plots and  Parameter Selection. Additional information about the

qualitative features of recurrence plots can be found in Riley,

Balasubramaniam, and Turvey (1999).

Our plan was to use program R Q E . E X E  (Recurrence

Quantification Epochs) to examine effects of cognitive task condition on

five recurrence variables: %recurrence (%REC), %determinism

(%DET), maxline (MAXL), entropy (ENT), and trend (TND).

In contrast to the program RQD.EXE, which we used to generate

the  recurrence  plots,  the  output  of  RQE.EXE  is  entirely  quantitative.
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Figure 3.5. Recurrence plots for the AP COP (top) and ML COP (bottom) time series shown in

Figure 3.4. The time series are plotted at the bottom of the figure. Recurrence parameters and

recurrence output are listed to the left of the plot. Distribution of line lengths is graphed at the

bottom left.
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Recurrence variables are calculated from the upper triangular area of

the recurrence plot, excluding the central diagonal, because the plot is

symmetrical about the main diagonal. %REC is the percentage of data

points that are recurrent, defined as those points falling within a

distance specified by a selected radius value (see below). %DET, an

index of degree of determinism, is the percentage of recurrent points

that form diagonal lines in a recurrence plot (parallel to the central

diagonal). In other words, %DET refers to the percentage of

consecutive recurring points. The number of consecutive points

needed to constitute a line is determined by the value selected for the

line length parameter. MAXL is the length of the longest diagonal line,

excluding the main diagonal. MAXL is inversely proportional to the

largest positive Lyapunov exponent, and thereby provides a measure

of the dynamical stability of the system. According to Webber and

Zbilut (Chapter 2), “the shorter the [MAXL], the more chaotic (less

stable) the signal.” ENT is calculated as the Shannon information

entropy of a histogram of diagonal line lengths, and is an index of the

complexity of the deterministic structure of the time series. TND

provides a measure of the degree of system stationarity, with values of

TND at or near zero reflecting stationarity and values deviating from

zero indicating drift in the system.

Quantification of Qualitative Features of Recurrence Plots

Visual inspection of recurrence plots may be useful for a

qualitative understanding of the quantitative recurrence measures

described above. To this end, we have generated several recurrence

plots for time series with known structure. In particular, we show

recurrence plots for a simple sinusoid (Figure 3.6), the same sinusoid



Pellechia & Shockley

113

Figure 3.6. Recurrence plot for a simple sinusoid.

with superimposed white noise (Figure 3.7), the same sinusoid with a

linear drift (Figure 3.8), a sample time series from a known complex

mathematical system—the Lorenz attractor (Figure 3.9), and time series

from two regimes of another mathematical system, the Hénon attractor

(Figure 3.10). Comparison of the recurrence plots will help to illustrate

what the quantitative recurrence measures actually mean.

%REC & %DET.  Consider the simple sinusoid, which is an

entirely deterministic signal, depicted in the bottom of Figure 3.6. By

entirely deterministic, we mean that each value in the time series

recurs and is part of a string of consecutive recurring values. This

aspect of the time series is illustrated by every illuminated pixel in the

recurrence plot corresponding to part of a diagonal line. This means
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Figure 3.7. Recurrence plot for a sinusoid with superimposed white noise.

Figure 3.8. Recurrence plot for a sinusoid with linear drift.



Pellechia & Shockley

115

Figure 3.9. Recurrence plot for a time series from the Lorenz attractor.

that the proportion of recurring points that are part of a diagonal line is

100% (i.e., %DET = 100%). Note that just because every value in the

time series recurs does not mean that every possible point in the

recurrence plot is recurrent. In this particular example, of all of the

possible locations that could be recurrent in a time series of a length of

950 data points (950 × 950 / 2 = 451,250), 26,853 were recurrent (~6%)

(the total number of possible recurrent points [950 × 950] is divided by

2 because only one of the triangular regions is used to calculate

recurrence, since the plot is symmetrical about the main diagonal).

For the time series depicted in Figure 3.7, we no longer have an

entirely deterministic signal, given that we have added a random

component (white noise). Each  value in the time series no longer

recurs and each value that does recur is no longer necessarily part of  a
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Figure 3.10. Recurrence plot for a times series from a periodic regime (top) and a chaotic
regime (bottom) of the Hénon attractor.
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diagonal line. The fact that each value in the time series no longer

recurs is illustrated by fewer illuminated pixels in the plot (4,889 as

compared to 26,853 in Figure 3.6) and a lower proportion of values

recurring (~1%).  The fact that the noisy signal in Figure 3.7 is no longer

entirely deterministic is illustrated by the fact that fewer of the

illuminated pixels form diagonal lines, which results in a lower value of

%DET (~ 12%) than the signal in Figure 3.6.

TND.  The time series depicted in Figure 3.8 is nonstationary—

the mean state drifts (becomes lower in this case) over time. This was

achieved simply by adding a monotonic decrease (a negatively sloped

straight line) to the time series depicted in Figure 3.6. Note that we only

have a modest change in %REC (~5%), and no change in %DET (100%)

as compared to the time series in Figure 3.6 (~6% and 100%,

respectively). However, one can see a qualitative difference between

the recurrence plots depicted in Figures 3.6 and 3.8.

Recall that the central diagonal corresponds to sameness in time.

This location in the recurrence plot is ubiquitously recurrent because it

represents comparison of a value to itself. But note that as one moves

perpendicularly away from the central diagonal, this represents

deviation in time. For example, as one moves upward and left away

from the diagonal, this means that one is comparing a point early in the

time series (indicated by a value on the x-axis near the origin) to a

point later in the time series (indicated by a value on the y-axis near the

extreme). As one moves perpendicularly away from the central

diagonal in Figure 3.8, the pixel density decreases. This occurs

because over time there is a drift in the mean state of the time series.

The average value of the first 100 points in the time series is
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approximately 0.09, while the average of the last 100 points is

approximately –0.09. The color density does not change, however, in

the recurrence plot depicted in Figure 3.6. This qualitative aspect of the

recurrence plot is quantified by the measure of trend (TND)—the slope

of %REC as a function of distance away from the diagonal. Note that

TND for Figure 3.8 is considerably different than zero (~7) while the

value of TRD for Figure 3.6 is approximately equal to zero.

ENT.  The time series depicted in Figure 3.9 is a sample of data

generated from the Lorenz model. The Lorenz system is a nonlinear,

chaotic system that would be considered a complex system by most.

The equations representing the Lorenz system and the true and

reconstructed phase spaces of the system may be seen in Shockley

(Chapter 4). We have selected sample data from this system to

illustrate how recurrence analysis may be used to quantify the

complexity of a time series. Note that in the time series depicted in the

bottom of Figure 3.9 the system appears to be somewhat periodic, as

indicated by the peaks and valleys occurring at similar periods.

However, the amplitude of the signal changes over time and abrupt

shifts in the value of the system occur at irregular intervals (compare

the first part of the time series to the later parts). Note that most of the

illuminated pixels form diagonal lines (as indicated by %DET = 99%)

and that we see a similar proportion of recurrent points as in Figure 3.6

(~7%). However, the recurrence plot in Figure 3.9 looks different than

the recurrence plot in Figure 3.6. This distinction between the plots can

be captured most readily by the frequency distribution of line lengths

shown in the lower left of each figure. The distribution of line lengths

for the Lorenz system (Figure 3.9) has a richer variety than that for the
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simple sinusoid (Figure 3.6). This variety of structure is what is meant

by complexity in recurrence analysis. This aspect of the time series is

quantified by the Shannon entropy (ENT ; the negative sum of the

normalized log2 probabilities [P] of lines corresponding to given line

lengths) of the line length distributions in question (see Equation 2.11 in

Webber & Zbilut, Chapter 2). Note that the entropy for the Lorenz

system (ENT = ~5) is greater than the entropy for a simple sinusoid

(ENT = ~2), indicating that the Lorenz system is more complex than a

simple sinusoid.

MAXL.   To illustrate the meaning of the recurrence measure

maxline (MAXL), we have selected data sets generated from the Hénon

system. The Hénon system is a model of the dynamics of stars moving

within galaxies. It is governed by the following two equations of motion:

21 axyx −+=&    [3.1]

bxy =&    [3.2]

where x and y correspond to the dimensions of change, x and y with

overdots correspond to rate of change along those dimensions, and a

and b are parameters.

One of the interesting features of the Hénon system is that

depending on the values of the parameters (a and b) the Hénon system

may exhibit behavior that is highly predictable (periodic) or chaotic

behavior that is only predictable in the very short term. Figure 3.10

shows recurrence plots of a periodic regime (oscillation among 16

values;e.g., a = 1.055, b  = 0.3) and a chaotic regime of the Hénon
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system (e.g., a = 1.4, b = 0.3) (the data sets used in the present example

a r e  p r o v i d e d  w i t h  t h e  R Q A  s o f t w a r e  a t

http://homepages.luc.edu/~cwebber/). By definition, the chaotic

regime is less stable than the periodic regime. By stability we mean

that two trajectories that are initially nearby one another stay nearby

one another longer in a more stable system than in a less stable system.

MAXL has been shown to be sensitive to the stability of the system in

question (Eckmann, Kamphorst, & Ruelle, 1987).1  The larger MAXL, the

more stable the system—nearby trajectories diverge less quickly than

for a system with a smaller MAXL. For the chaotic regime of the Hénon

attractor the longest diagonal line is quite short (MAXL = 7) as

compared to the longest diagonal line for the periodic regime (MAXL =

942). While it is the case that MAXL will change considerably

depending on the system under scrutiny (as can be seen by

comparison of MAXL values for Figures 3.6-3.10), what is of interest is

how MAXL changes within the same system (in this case the Hénon

system) under different conditions.

Parameter Selection

Prerequisite to generating plots and calculating recurrence

variables is the selection of appropriate settings for seven parameters:

                                                  
1
  Lyapunov exponents quantify the exponential rate of divergence of nearby trajectories along

a given dimension in the system. A negative Lyapunov exponent quantifies the average rate of
convergence of trajectories over time, while positive Lyapunov exponents characterize the
average rate of divergence over time. For a highly stable system (e.g., periodic systems), two
trajectories that are initially nearby one another will continue to be nearby one another at any
given later point in time. This means that the Lyapunov exponent would be at or near zero (i.e.,
no divergence over time). One hallmark of chaotic systems, however, is that they have at least
one positive Lyapunov exponent (meaning that along at least one dimension, two trajectories
that are initially nearby one another will diverge exponentially over time). Chaotic systems that
exhibit bounded regions in which trajectories unfold (e.g., the Lorenz attractor or the Henon
attractor for certain parameter ranges) also have at least one negative Lyapunov exponent.
MAXL has been shown to be inversely proportional to the largest positive Lypunov exponent
(larger MAXL smaller value of Lyapunov exponent; see Eckmann, Kamphorst, & Ruelle, 1987).

http://homepages.luc.edu/~cwebber/


Pellechia & Shockley

121

Embedding dimension, delay, range, norm, rescaling, radius, and line

length (see Webber & Zbilut, Chapter 2). Selection of these parameter

values is challenging. Although some guidelines are available, there

are as of yet no absolute standards for identifying the most appropriate

parameter values. A summary of the decision making that was involved

in our choice of parameters follows.

Selection of some parameters is more difficult than others.

Choosing a proper embedding dimension, delay, and radius are

among the most challenging decisions that must be made. We followed

the approach described by Zbilut and Webber (1992) and used by

Riley et al. (1999) to select values for those three parameters. The

general strategy is to calculate RQA measures for a range of parameter

values, and select a value from a range in which small changes in

parameter settings result in small, continuous changes in the RQA

measures. To follow that strategy, we enlisted program RQS.EXE

(Recurrence Quantification Scale), which “…scales recurrence

quantifications for a single epoch of data by incrementing parameter

values over specified ranges” (Webber, 2004, p. 6). In the following

paragraphs, we describe first the decision making involved in selecting

a range of parameters for embedding dimension, delay, and radius for

use in RQS.EXE, and next the choice of a single setting for each

parameter.

Embedding Dimension.  Embedding dimension specifies the n-

dimensions of the reconstructed phase space, that is, the dimension

into which the dynamic of the system under study will be projected

(see discussion of delay below). Selecting an embedding dimension

that is too high can amplify the effects of noise. Choosing an
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embedding dimension that is too low will result in underdetermination,

that is, the dynamics of the system will not be fully revealed. Webber

(2004) suggested, for physiological data, starting with embedding

dimensions between 10 and 20 and working downward. Investigators

applying RQA to the study of COP data have reported embedding

dimension 8 (Schmit et al., submitted), 9 (Riley & Clark, 2003) and 10

(Balasubramaniam, Riley, & Turvey, 2000; Riley et al., 1999). Based on

Webber’s suggestion and previous papers, we decided to examine

RQA output for embedding dimensions 7 through 10.

Delay.  As mentioned previously, time-delayed copies of the data

series are used as surrogate variables to project the data into higher-

dimensional space. The delay parameter specifies the time lag to use in

reconstructing that phase space. For example, imagine a time series for

which we selected a delay (τ) of 10 and embedding dimension of 3. Our

first embedding dimension [x(t)] in the reconstructed phase space

would start at data point 1 of the original time series (x), the second

embedding dimension [x(t + τ)] would start at data point 11, and the

third embedding dimension [x(t + 2τ)] would start at data point 21. A

two-dimensional phase space could be constructed the same way that

one plots a two-dimensional scatterplot to evaluate the relationship

between two variables in correlation or regression, the two variables in

this case being x(t) and x(t + τ). One could add a third (or higher)

dimension to the phase space in the same fashion (see Figure 4.4 in

Shockley, Chapter 4). Previous studies in which COP data were

sampled at 100 Hz used time delays ranging between 0.04 s and 0.09 s.

Considering the sampling rate of the force plate used in the present

study (50 Hz), delays of 2 to 5 data points corresponded to time delays
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of 0.04 to 0.10 seconds. We decided to examine RQA output for delays

ranging between 2 and 10 data points.

Radius.  The radius parameter defines the Euclidean distance

within which points are considered neighbors in the reconstructed

phase space. Said differently, the radius sets the threshold for

recurrence. The larger the radius, the more points will be considered

recurrent. As a general guideline, a radius should be selected such that

%REC remains low (see Webber & Zbilut, Chapter 2). We wanted a

radius that was small enough to yield relatively low %REC (no larger

than 5%), but not so small as to produce a floor effect with values of

%REC near or at 0.0%. Other investigators have used a radius of 10 or

11 in the analysis of COP data (Balasubramaniam et al., 2000; Riley et

al., 1999; Riley & Clark, 2003). We decided to examine RQA output for

radius settings ranging between 10 and 26.

Norm.  The norm parameter determines the method used for

computing distances between vectors in the reconstructed phase

space. We selected Euclidean normalization, which is consistent with

previous studies using RQA to examine COP data (see Riley et al., 1999;

Riley & Clark, 2003).

Rescale. The rescale parameter determines the method used to

rescale the distance matrix. Although rescaling to maximum distance is

a typical choice, we decided to rescale relative to mean distance. Mean

distance rescaling minimizes the influence of an outlier, which can be a

problem when rescaling to maximum distance. An assumption of

rescaling to mean distance, however, is that the distribution of the

distances is Gaussian.
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Range. The range of data points included in the recurrence

analysis is specified by setting the first point, Pstart (the data point in the

time series at which the analysis will start), and the last point, Pend (the

data point in the time series at which the analysis will end). We wanted

to include as many of the data points in the time series as possible in

our recurrence analysis. For that reason, we input the first point as 1

and the last point as 1410, thereby selecting the largest range possible,

given constraints due to the number of data points in the time series (N

= 1500), maximum embedding dimension (M = 10), and maximum

delay (τ = 10). The last data point was determined by Pend = N – (M – 1)

× τ. This guarantees the use of the maximal number of data points and

the same number of data points within each surrogate dimension in the

phase space. When using RQS.EXE, however, we did not actually have

to compute Pend, because when the program prompts the user to input

LAST (Pend), it specifies the last possible point in the time series that

could be used. We simply input that last possible point, 1410, as our

value for Pend.

Line Length. Line length specifies the number of consecutive

recurrent points required to define a line segment. Often, line length is

set at two points. Specifying a line length of more than two points yields

increasingly conservative estimates of the deterministic structure in the

system. In the present study, line length was set to three points.

Having determined a range of parameter settings for embedding

dimension, delay, and radius, and selected settings for norming

method, rescaling method, range, and line length, our next step was to

choose (at random) a few trials from each experimental condition and

use program RQS.EXE to compute recurrence measures for the selected
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parameter ranges. To reiterate, our purpose in running RQS.EXE on a

sample of experimental trials was to generate recurrence measures for

a range of embedding dimensions, delays, and radius values. As noted

above, we set minimum embedding dimension at 7, maximum

embedding dimension at 10; minimum delay at 2 samples, maximum

delay at 10 samples; and minimum radius at 10, maximum radius at 26.

Table 3.1 lists each of the parameter settings we selected in running

RQS.EXE.

We inspected the recurrence measures that were generated by

RQS.EXE for our sample of trials to decide on specific settings for

embedding dimension, delay, and radius to be used in carrying out the

RQA of all experimental trials. To recap, we were looking for small

changes in parameter settings yielding smooth changes in output

measures, %REC values ranging between 1% and 5%, and absence of

ceiling or floor effects on %DET. We created in Matlab (Mathworks,

Inc., Natick, MA) a series of surface plots to visualize changes in %REC

as a function of embedding dimension, delay, and radius. A separate

plot was created for each of the four embedding dimensions under

examination (see Figure 3.11), with radius on the x-axis, delay on the y-

axis, and the dependent variable %REC on the z-axis. The surface plots

in Figure 3.11 illustrate well that in spite of the fact that increasing

values of radius yielded higher %REC, each of the plots looks

qualitatively similar. That is, there are no qualitative differences in the

patterns of %REC (i.e., the shape of each surface) for this range of

parameter settings. The fact that incremental changes in parameter

values yield smooth (not abrupt) changes in %REC (e.g., steady

increases in %REC with increases in radius or steady decreases in
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Table 3.1.  Parameter settings selected when prompted by program RQS.EXE.  MIN =
minimum; MAX = maximum; RANDSEQ = randomize data sequence.  See README.TXT
file accompanying software for further explanation of parameters listed above (Webber.
2004).  NORM value of 3 corresponds to Euclidean normalization.  Selection of RANDSEQ
n is a “no” response to the option of randomly sequencing points in the data set, thereby
retaining the original order of points in the time series.  Rescale value of 2 instructs the
program to rescale the matrix to mean distance.

Parameter Setting

DELAY MIN 2

DELAY MAX 10

EMBED MIN 7

EMBED MAX 10

NORM 3

FIRST 1

LAST 1410

RANDSEQ n

RESCALE 2

RADIUS MIN 10

RADIUS MAX 26

RADIUS STEP 1

LINE 3

%REC  with  increases of  embedding dimension) suggests that using a

set of parameters within the selected range will not yield notable

changes in %REC that are artifacts of parameter selection. For

additional  information  about surface plots, see  Shockley’s (Chapter 4)
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Figure 3.11. Surface plots for embedding dimensions 7-10, showing steady increase in
percentage of recurrent points (%REC) with increasing values of radius, but no apparent
difference in the pattern of %REC across the four plots.

application of cross-recurrence analysis. Based on  our  inspection  of

the  surface  plots  and  the numerical recurrence output generated by

program RQS.EXE, we selected the following parameter settings:

Embedding dimension of 7, time delay of 3 samples (corresponding to

a 0.06 s lag), and radius of 16. Our decision to set the radius parameter

at 16 means that points falling within 16% of the mean Euclidean

distance of each other would be considered recurrent. As can be seen

in the surface plots, this radius ensures that our %REC values will be in
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our target range of 1-5%. It is important to note that had we selected

slightly different parameters, we would still have seen the same basic

pattern in the results, although the particular magnitudes of recurrence

measures would have scaled up or down.

Our next step was to run the RQA with the selected parameter

settings on the entire set of experimental trials. Program RQE.EXE was

used to compute the five recurrence variables of interest, %REC,

%DET, MAXL, ENT, and TND. As a practical note, recurrence analysis

can take a long time (hours) to run, depending on file size, number of

trials, and processor speed. An advantage of using RQE.EXE  as

opposed to RQD.EXE, for example, is that the former allows multiple

analyses to be executed in batch mode, rather than waiting for each file

to be analyzed and typing the next command for the next file to be

analyzed. Computations were performed using the following parameter

settings: Delay = 3, embedding dimension = 7, range = 1–1482, norm =

Euclidean, rescaling = mean distance, radius = 16, and line length = 3.

The program RQEP.EXE was used to generate a parameter file, to be

called by the batch file commands, containing those parameter

selections. An ASCII (text), tab-delimited batch file (filename.bat) was

set up such that each row corresponded to the MSDOS command for

analyzing one file using RQE.EXE. The number of rows corresponded to

the number of files to be analyzed (see README.TXT file for complete

instructions). Program run time for the present data was approximately

four hours. Mean values for the recurrence measures were calculated

for the two trials in each condition. Separate ANOVAs were conducted

on each recurrence measure for AP COP and ML COP time series.
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After the RQA was complete for all of the experimental trials, we

reran the RQA for six randomly chosen trials using the same parameter

settings, but selecting the option to randomize the order of the data

points. Comparing the RQA findings of the randomly shuffled data and

the normally sequenced data provides the means to confirm our choice

of parameter settings as appropriate for revealing the deterministic

structure present in the original time series (see Webber & Zbilut,

Chapter 2).

Figure 3.12 depicts the recurrence plots generated with random

shuffling of data from the time series in Figure 3.4. Although the values

in the time series of Figure 3.12 (just below the recurrence plot) are

exactly the same as those for the time series in Figure 3.5, because they

are randomly shuffled, nearness in time no longer necessarily means

nearness in value. For example, in a typical time series, the value for

the 10th data point will be reasonably close to the value for the 11th data

point, simply because a person cannot instantaneous move the body

across large distances. However, when the values are randomly

shuffled, the 100th data point from the original time series could end up

next to the 10th data point of the original time series. When the data

points from the new, randomly shuffled time series are connected by a

line for plotting, the time series now looks extremely densely packed

as compared to the original, in spite of the fact that none of the values

have changed. This, however, is simply an artifact of “connecting the

dots,” as it were.

What is more important than comparing the time series of

Figures 3.5 and 3.12 is comparing the recurrence plots. Recall that only

recurring points are plotted in a recurrence plot. Visual comparison of
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Figure 3.12. Recurrence plots for the AP COP (top) and ML COP (bottom) data sets shown in
Figure 3.4, but randomly shuffled. The data series (following random shuffling) are shown at the
bottom of the figure; recurrence parameters and recurrence output are listed to the left of the
plot. Note that the same recurrence parameters were used to generate recurrence plots for the
original times series (see Figure 3.5) and the randomly shuffled data sets.
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the recurrence plots in Figures 3.5 and 3.12 shows that fewer points are

recurrent for the randomly shuffled data and that almost none of those

recurrent points form diagonal lines. This qualitative change is

reflected quantitatively by the fact that, for the randomly shuffled data,

%REC < 0.01% and %DET < 0.001%. Randomizing the data reduced

the number of recurrent points, but, perhaps more importantly, it

eliminated the deterministic structure of the original time series. The

interested reader can reproduce the plots shown in Figure 3.12 by

using the data that accompany this chapter and running program

RQD.EXE with the parameter settings listed previously (and depicted at

the left side of the plots in Figure 3.12) and selecting ‘y’ for the

randomize data sequences option.

Results of RQA

For AP COP, ANOVA revealed a main effect of cognitive task

condition on %DET, F(3, 57) = 3.52, p < .05, which is shown in Figure

3.13a. %DET was greater for counting back by 3s (M = 88.70) than quiet

standing (M  = 85.65) and digit reversal (M  = 83.61). This finding

suggests that the temporal structure of AP postural fluctuations became

more regular as the attentional demands of the cognitive task

increased. Recalling the results of the traditional analysis of AP COP

data (Figures 3.3b and 3.3d) in view of the observed changes in %DET

for the AP COP time series, we see that although the amplitude and

variability of postural sway increased with greater attentional demands

of the concurrent cognitive task, the postural fluctuations became more

deterministic (regular). ANOVAs on %REC, MAXL, ENT, and TND did

not reveal any other effects of cognitive task condition for the AP COP

time series.
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Figure 3.13. Results of RQA for all experimental trials. (a) Percent determinism (%DET) for AP
COP as a function of cognitive task condition. For ML COP, (b) Percentage of recurrent points
(%REC), (c) maxline (MAXL), and (d) entropy (ENT) as a function of cognitive task condition.

For ML COP, ANOVA on %REC showed that the effect of

cognitive task condition approached significance, F(3, 57) = 2.64, p <

.06 (see Figure 3.13b). Pair-wise comparisons revealed a lower

percentage of recurrent points (p < .05) for the counting back by 3s

cognitive task (M = 2.89) than for digit classification (M  = 3.25) and

quiet standing (M = 3.47). Generally, ML COP fluctuations were less

recurrent when performing concurrent cognitive and postural tasks

than when simply standing.

ANOVA on MAXL of the ML COP time series revealed a main

effect of cognitive task condition, F(3, 57) = 2.83, p < .05. MAXL was

shorter for counting back by 3s (M = 1142.9) than for digit classification

(M = 1286.8) and digit reversal (M = 1278.3). This finding, depicted in
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Figure 3.13c, suggests that the temporal structure of the ML COP was

less mathematically stable when the cognitive task required higher

attentional demands.

Figure 3.13d shows the significant main effect of cognitive task

condition on ENT of the ML COP data, F(3, 57) = 4.25, p < .01. ENT was

lower for counting back by 3s (M = 4.60) than for digit classification (M

= 4.73) and quiet standing (M  = 4.78). This finding suggests the

deterministic structure of the ML COP was less complex for the

cognitive task of highest attentional demand.

ANOVAs for the ML COP data did not indicate an effect of

cognitive task condition on the recurrence measures of %DET and TND.

GENERAL DISCUSSION

The present research highlights the utility of RQA for the study of

postural fluctuations. Using a traditional approach to the analysis of

COP data, we found that total COP excursion, as well as the range and

variability of AP and ML COP motion, were impacted by attentional

demands in a similar manner. Results of the traditional analyses showed

that performing a concurrent cognitive task increased the magnitude

and variability of postural sway. These findings could lead one to

conclude that carrying out an unrelated but concurrent cognitive task

compromises postural stability.

The RQA results suggest an alternative interpretation. Attentional

demands impacted postural sway, but not necessarily in the form of a

decline in the effectiveness of the postural control system. Examination

of the temporal structure of postural fluctuations revealed that

attentional demands influenced AP COP and ML COP in different ways.
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Whereas with higher attentional demands fluctuations in ML COP

became less recurrent, less stable, and less complex, AP COP

fluctuations became more deterministic. What might explain these

observed differences in recurrence patterns in the two COP component

directions? One possibility is that the RQA findings reflect a strategy

being used by the central nervous system (CNS) to optimize postural

control. Recall the stance position maintained by study participants,

which is shown in Figure 3.2. In keeping with instructions to stand with

feet together, participants adopted a narrow base of support during

testing. Thus, it is likely that the perceived limit of stability (PLOS—the

distance an individual can sway without losing balance or taking a

protective step) was smaller for ML motion than for AP motion.

Increases in ML COP motion may have presented a greater threat to

postural stability than AP COP motion, since increased ML motion

would bring the ML COP closer to the PLOS. The changes in recurrence

patterns of ML COP data series may follow from the increased COP

motion in that direction. Of note, spontaneous ML postural sway, rather

than AP sway, has been shown to be predictive of fall risk in older

adults (Lord, Rogers, Howland, & Fitzpatrick, 1999; Maki, Holliday, &

Topper, 1994).

Why wouldn’t the CNS simply reduce sway range and variability

as a way of promoting postural stability under conditions of greater

attentional demand? The observed increase in the deterministic

structure of AP COP may be a more efficient and more effective means

of optimizing postural control. Sway range and variability are important

aspects of exploratory postural behavior—sway is “exploratory”

because it generates stimulation regarding the current state of postural
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stability. The regularization of AP motion could be a strategy that

simplifies the problem of postural control without sacrificing the pick-

up of perceptual information made available through spontaneous

postural sway. In short, rendering AP COP motion more deterministic

may be one approach by which the postural system adjusts to the

attentional demands of a concurrent cognitive task.

To summarize, it is difficult to interpret the results of the

traditional analysis of COP data in terms other than a classical dual-task

effect, in which concurrent performance of a cognitive task brings

about a decrement in the ability of the CNS to control posture. Results

of RQA, however, suggest adaptation of the postural system (perhaps

proactively as well as reactively) to changing task demands. Although a

full understanding of the findings reported here must await further

research, a few points are clear. The results of the RQA brought to light

dynamical processes inherent in postural control that are not evident in

summary measures of COP path magnitude and variability. In addition,

our findings offer further evidence that AP and ML COP motion can be

affected differentially in response to varying task requirements

(Balasubramaniam et al., 2000). Most importantly, the present study

supports the notion that the response of the postural control system to

dual-task requirements is one of adaptation not deterioration.

CONCLUSION

A conventional approach to the analysis of COP data revealed

increases in measures of COP path magnitude and variability during

performance of a concurrent cognitive task. Those findings are

consistent with the notion that dual-tasking compromises postural
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control. Also of note, AP COP and ML COP summary measures were

impacted in a similar manner. In a second stage of data analysis, RQA

revealed changes in the dynamical properties of postural sway brought

about by concurrent performance of cognitive and postural tasks.

Among the observed changes were differential effects on the AP and

ML components of postural fluctuations. The results of RQA suggest that

the postural control system adapts, rather than deteriorates, in

response to changing attentional requirements. The analytic tools

available through RQA promise insight into the mechanisms and

processes underlying postural control not accessible with a

conventional approach to the study of postural sway.
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