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Measuring interpersonal coordination in the context of

conversation has been a challenging problem in psychology for at least

three decades.  This is an interesting problem because observations of

interpersonal coordination in the context of cooperative conversation

appear to index the coordination that is required to complete the goals

of a particular interaction (Clark, 1996).  This type of coordination has

been indexed in a number of ways, including the convergence of

speaking rate (Street, 1984), vocal intensity (Natale, 1975), pausing

frequency (Cappella & Planalp, 1981), and even in the convergence of

conversational partners’ dialects (Giles, Coupland, & Coupland, 1991).

Conversational partners have also been observed to mirror or mimic

each others’ postures (LaFrance, 1982).  Until very recently, however,

such indices of coordination have been based on fairly subjective

observation procedures.  For example, Condon and Ogston (1971)

assessed interpersonal coordination by hand scoring video-taped

interactions to evaluate the timing of listeners’ movements with

reference to the rhythmic properties of a speaker.

More recent techniques of quantifying interpersonal

coordination have made the visual scoring approach somewhat more

systematic by sketching joint angles from video tapes and quantifying

the number of joint angle changes (Newtson, 1994; Newtson, Enquist, &

Bois, 1977; Newtson, Hairfield, Bloomingdale, & Cutino, 1987).  Spectral

profiles of periodicity of joint angle changes were then compared

across conversers.  This strategy has revealed apparent coupling of the

behavioral waves of conversers.  While the Newtson et al. approach is

certainly an improvement over previous methods, problems with

distortions from scoring 2-dimensional video tapes of 3-dimensional
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movements cannot be avoided.  The magnitude of angle changes of

joints based on visual estimates of a 2-D video is dependent upon the

angle of the video-taped person relative to the 2-D viewing plane of the

video screen.  Thus, visual estimates of angle changes from video will

be distorted unless the movements are always aligned with the viewing

plane.  An additional drawback is that the degree of joint angle change

is not measured—all that is measured is that joint angles changed.

Shockley, Santana, and Fowler (2003) introduced a strategy for

evaluating the degree of interpersonal coordination that involves

submitting measurements of postural sway to cross recurrence

quantification (CRQ) analysis.  The advantage of CRQ over

conventional linear methods is that it requires no assumptions about the

nature of the data in question, and it offers an objective method for

studying interpersonal coordination.  The purpose of this chapter is to

provide a tutorial for how to apply this recently developed analysis to

postural data using the method and data of Shockley et al. (2003).

Before discussing the CRQ technique and its theoretical foundations,

however, some understanding of postural sway is necessary to make it

clear why such an approach is warranted.

POSTURAL SWAY

Although standing upright seems straightforward and effortless

to most of us, it is actually quite challenging to explain how we are able

to accomplish this task.  Consideration of the underlying anatomical

constraints and surrounding physiological processes reveals that the

apparently simple act of standing upright is quite complex and yields a

correspondingly complex behavior that is not straightforward to
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quantify. The fact that postural activity is complex motivates the need

for measures that are not restricted by the assumptions of linear

methods.

Operationally, upright stance is best understood as the

maintenance of the horizontal position of the center of mass of the body

within the boundaries of the base of support of the body.  Imagine a line

drawn straight down to the ground along the direction of gravity from

the center of mass of the body (generally in the region of the

abdomen).  In order to avoid falling down, the projected line from the

center of mass must remain within the base of support of the body

(usually the anterior-posterior and lateral extents of the feet).

The simplest image of this control requirement is to keep an

inverted pendulum upright.  To build your intuitions, try to balance an

inverted broomstick on one finger.  Note that in order to keep the

inverted broomstick upright, quick adjustments to the position of the

supporting finger are required as the broomstick begins to fall in one

direction or another.  This is a useful image, but the inverted pendulum

image is certainly not an adequate model of postural control, however,

given that most animals are of the multi-segmental variety.  The

consequence of this fact is that the center of mass must effectively be

balanced over the base of support across many joints.

One may imagine that simply freezing all joints in a particular

position would achieve the desired goal of standing upright.  The

physiological activity surrounding all of our actions, however, must also

be considered.   For example, instability in the position of the center of

mass is introduced by physiological processes such as the inherent

tremor of muscular tensile states, heart compressions, and the
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expansion and compression of the chest cavity involved in breathing.

These inherent perturbations result in instability of the position of the

center of mass over time; this is generally referred to as postural sway

(see Figure 4.1).

Postural sway occurs even during so-called quiet stance

(standing without engaging in other activities; Collins & De Luca, 1994;

Newell, Slobounov, Slbounova, & Molenaar, 1997), but occurs

especially when supra-postural tasks (e.g., reading, talking, pointing,

reaching) are added to the demands of maintaining upright stance

(Balasubramaniam, Riley, & Turvey, 1997; Belen’kii, Gurfinkel’, &

Pal’tsev, 1967; Fel’dman, 1966; Riccio & Stoffregen, 1988; Riley, Mitra,

Stoffregen, & Turvey, 1997; Stoffregen, Pagulayan, Bardy, & Hettinger,

2000).  For example, the seemingly benign act of raising one’s arm

compromises postural stability and requires concurrent (and often

prior) compensation of the muscles of the thighs, hips, and trunk to

keep the center of mass within the base of support (Belen’kii,

Gurfinkel’, & Pal’tsev, 1967; Pal’tsev & Elner, 1967).  Speaking and

gesturing are ubiquitous in conversation and, accordingly, add to the

instability of the location of the body’s center of mass.

CAPTURING THE DYNAMICS OF UNKNOWN NONLINEAR SYSTEMS

The inherent instability of postural activity described above has

made the quantification of postural sway quite challenging.  The most

direct methods for measuring postural sway involve the measurement

of the center of pressure of the body using a force platform or the

measurement  of  displacement  of  the  center  of  mass  using  a motion
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Figure 4.1. Sample postural sway time series during quiet stance.  The abscissa corresponds to
time (sec) while the ordinate corresponds to anterior-posterior displacement (cm).

tracking system.1  These measures yield time series that are typically

irregular, non-stationary (i.e., there is drift in the mean and/or standard

deviation of the time series over time), and non-periodic (Carroll &

Freedman, 1993; Collins & De Luca, 1993).  Thus, conventional (linear)

analyses that assume normal distributions and stationarity, such as

correlational or spectral methods, are not appropriate for postural sway

                                                  
1 The center of pressure corresponds to the point of application of the sum of forces acting
between the feet and the surface of support (see Pellecchia & Shockley, Chapter 3).
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data (see Riley, Balasubramaniam, & Turvey, 1999; see also Pellecchia

& Shockley, Chapter 2, for a comparison of linear and nonlinear

methods of analyzing postural sway).

Linearity vs. Nonlinearity

By definition, linear time series analysis methods assume

independence and additivity of the multiple degrees of freedom that

contribute to a given observable.  Nonlinear systems have degrees of

freedom that interact multiplicatively.  Relatively recent investigations

into nonlinear systems have inspired the development of analysis

methods that capitalize on the interactive nature of nonlinear systems

(see Abarbanel, 1996).  In some cases, the variables that contribute to

the dynamics of some nonlinear systems are known and can be

indexed.  Most often, however, the variables that contribute to the

dynamics of a system under investigation are not known.  The

advantage of a nonlinear system, however, is that the dynamical

variables interact.  Thus, the influence of unknown (or perhaps

unmeasurable) variables can be indexed by variables that are readily

measurable.  To illustrate this peculiar feature of nonlinear systems, I

will show how the measurement of a single variable from a system with

known dimensions can be used to capture the dynamics of the whole

system.

The Lorenz Attractor: A Nonlinear System With Known Dynamics

The Lorenz (1963) system is a model of convection (i.e., heat

transfer) in the atmosphere.  The dynamics (i.e., changes in states) of

the Lorenz model can be characterized with three first order differential

equations,
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)( XYaX −=&    [4.1]

YZbXY −−= )(&    [4.2]

cZXYZ ==&    [4.3]

where X , Y , and Z  correspond to the three dynamical variables

(corresponding to two temperature measures and a velocity measure),

the over-dot corresponds to the rate of change (i.e., derivative) of the

variable in question, and a, b, and c are constant parameters.  What

makes the Lorenz system a complex, nonlinear system is the interaction

of the three dynamical variables.  As can be seen in Equations 4.1-4.3,

changes in X are dependent not only upon the value of X, but also upon

the values of Y and Z.  Therefore, the influences of the variables X, Y,

and Z on the current state of the system are not independent and

additive, but are instead mutually dependent and multiplicative.  The

interactive nature of dimensions along which a system may change

embodies the complexity of nonlinear systems and is also the key to

quantifying systems with unknown or unmeasured dynamical variables.

Phase Space Reconstruction and the Embedding Theorem

Often, the interplay of dynamical variables is best characterized

using a phase space (see Figure 4.2).  A phase space is essentially a

multidimensional scatterplot of each dynamical variable with respect to

the other dynamical variables.  As is often the case, however, the

particular variables that comprise a given nonlinear system may not be

known and perhaps may not even be knowable, a priori.  Fortunately,

lack of identification of the dynamical variables does not preclude one
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from gaining access to the underlying dynamics of the system in

question.

Figure 4.2. A three-dimensional plot (phase space) of the time evolution of the three dynamical
variables (X, Y, & Z) of the Lorenz system (Equations 4.1-4.3).

Takens (1981) introduced the embedding theorem, which

revealed that the preferred relations of the dynamical variables in a

nonlinear system (its attractors) may be discovered by reconstructing a

phase space for the system in question using time-delayed copies of a

single, observable dynamical variable of the system.  That is, the time

series of a single dynamical variable can be used to reveal the

underlying dynamics of the entire system by using time-delayed copies
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of the measured time series.  This is possible because (as described

previously) in nonlinear systems the multiple dynamical variables

interact with one another.  The interactive nature of the dynamical

variables comprising the nonlinear system generally yields quite

messy and unpredictable time series of the variables in question.

However, the interactive nature of the degrees of freedom of a

nonlinear system dictate that the activity of a single variable will be

influenced by the activity of all other dynamical variables.  Access to

one of the variables of a dynamical system can, accordingly, allow the

dynamics of the entire system to be evaluated by unfolding the time

series into the appropriate number of dimensions to reveal the

underlying dynamics.  In the next section I will illustrate how the

dynamics of the Lorenz system may be unfolded using time-delayed

copies of a single variable.

Distortions Due to Projection

Consider the time series of X in Figure 4.3.  The evolution of this

variable does not resemble the clearly defined attractor in Figure 4.2.

This is because the time series of the observed variable is represented

by only one dimension (X), whereas the Lorenz system requires three

dimensions to reveal the influence of the three dynamical variables.

While the time series depicted in Figure 4.3 does embody the dynamics

of the entire system, one cannot see the dynamics unfold properly

because the dynamics of the 3-dimensional system are ‘projected’ onto

a single dimension.  Such a distortion can be illustrated using a less

abstract example.

Imagine positioning your two hands such that both hands are

between a light source and a wall.   Both hands are some distance  apart
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Figure 4.3. The time series X(t) generated from Equations 4.1-4.3.  Given that the data are
simulated, time (t) corresponds to data points with no particular time units.

along the  dimension  separating  the light source and  the wall,  but the

two hands occupy the same position along the horizontal and vertical

dimensions of the wall.  In this configuration, the projected shadows of

the two hands on the wall will appear to occupy the same space.  This

shadow example illustrates a distorted, two-dimensional projection of

three-dimensional space.

Unfolding the Time Series

The lesson to be learned from Takens’ theorem  is  that  the

dynamics of  a nonlinear  system  of  multiple  degrees of freedom (e.g.,
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Figure 4.4. A reconstructed phase space of the Lorenz attractor using X(t) to create time-
delayed copies to serve as surrogate dimensions.  The delay (τ) used was 55 data points.

the Lorenz system) may be seen properly by unfolding the system into

the appropriate number of dimensions using time-delayed copies of

one measured dimension as surrogate dimensions in reconstructed

phase space.  This can be accomplished by using the original time

series, X(t), as the first dimension, X(t + τ) as the second dimension, and

X(t + 2 τ) as  the third  dimension, and so  on  for  four  and higher

dimensions.  In this example, I used a delay of 55 data points.  So, the

first dimension, X(t), begins at data point 1 of the original time series.

The second dimension, X(t + 55), begins at data point 56 of the original

time series.  The third dimension begins at data point 111 of the original
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time series.  What Takens demonstrated is that the reconstructed phase

space is isomorphic to the true phase space of the system and,

accordingly, allows the system in question to be evaluated in the

appropriate number of dimensions (compare Figures 4.2 and 4.4). The

purpose of the Lorenz example is to show that a phase space of a

system can be reconstructed even with access to only one of the many

possible dimensions of change.

QUANTIFICATION OF POSTURAL SWAY

How can one take advantage of the technique of phase space

reconstruction to quantify what appears to be terribly complex postural

activity?  Recent efforts have made headway in this regard and have

demonstrated that nonlinear methods of quantification are useful in

differentiating among postural sway time series that correspond to

subtly different activities of the person standing (see Riley et al., 1999;

Riley & Clark, 2003).  For example, Riley et al. (1999) detected

deterministic structure in postural sway time series that cannot reliably

be differentiated from stochastic noise using conventional methods.

The method they used was recurrence quantification analysis (RQA;

Webber & Zbilut, Chapter 2), which capitalizes on Takens’ embedding

theorem.

Recurrence Analysis

Webber and Zbilut (1994) introduced the basic RQA strategy,

which involves reconstructing a phase space for a given time series, in

the manner described above for the Lorenz system, and then tallying

the number of instances that an unfolded time series visits each location

in reconstructed phase space (i.e., how often a value recurs).  The
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degree of deterministic structure in the system may be assessed by

quantifying how many sequences of recurrent points are repeated (i.e.,

repeating patterns of recurrent points).  The variety of differing lengths

of these sequences of recurrent points (number of data points forming a

recurring sequence) may be used to determine the complexity of the

signal by computing the Shannon entropy (see below) of the

distribution of the lengths.  The stability of the system may be

measured by the longest of these sequences of recurrent points

(maxline) (Eckmann, Kamphorst, and Ruelle, 1987).  Finally, the degree

of stationarity of the system may be assessed by determining the slope

of the density of recurrent points as the points become more separated

in time (trend).  This procedure is known as auto-recurrence since a

time series is compared to itself.  See chapters in this volume by

Webber and Zbilut (Chapter 2) and Pellecchia and Shockley (Chapter

3) for more extensive discussion and illustration of RQA measures.

C ROSS R ECURRENCE Q UANTIFICATION AS A M EASURE OF

COUPLING

Cross Recurrence Quantification (CRQ) was introduced by

Zbilut, Giuliani, and Webber (1998) as an extension to RQA (see also

Webber & Zbilut, Chapter 2).  This extension involves effectively

embedding two synchronous time series in a reconstructed phase

space.  Rather than tallying the recurring locations of a single

embedded time series (auto-recurrence), the number of instances for

which locations are shared by the two time series is tallied in CRQ (see

Figure 4.5).  Measures comparable to those of RQA are available with

CRQ.  Percent recurrence (%REC) in CRQ corresponds to the ratio of
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Figure 4.5. Illustration of time series collection, phase space reconstruction, and CRQ
measures %REC and MAXL. Blue corresponds to data from one member of the participant pair
and red corresponds to data from the other member of the participant pair.  %REC quantifies
shared locations in reconstructed phase space of two points from the two time series.  MAXL
quantifies the longest of parallel trajectory of the two time series in reconstructed phase space.

the number of shared location relative to the number of possible shared

locations (see Figure 4.5).  Percent determinism (%DET) is the ratio of

the number of shared locations that are part of a sequence of shared

locations relative to the total number of shared locations.  Maxline

(MAXL) is the longest shared trajectory and is a measure of the stability

of the shared activity (see Figure 4.5).  Entropy (ENT) is the Shannon

entropy of the distribution of lengths of sequences of shared locations.

It was recently demonstrated that CRQ is a useful measure of the

coupling of two signals by evaluating physically coupled oscillators

(Shockley, Butwill, Zbilut, & Webber, 2002).  An apparatus was
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constructed that immersed a rotor with a paddle into a container filled

with viscous fluid.  The container (i.e., the driver) was then oscillated in

a translational fashion at a fixed frequency while the immersed rotor

was allowed to spin in the fluid at its natural frequency.  The idea was to

vary the strength of the coupling of the two oscillators by changing the

viscosity of the fluid. In this coupled-oscillator system, the coupling

strength of the signals was directly manipulated so that the efficacy of

CRQ for detecting shared activity could be evaluated.  Very subtle

couplings between two signals were detected by CRQ measures that

remained undetected by conventional, linear measures of coupling,

such as cross-spectral analysis.  For example, in medium and low

coupling conditions, CRQ was able to detect the influence of the driver

tray on the rotor oscillation to which linear spectral analysis was blind.

Having CRQ as a tool for quantifying the shared activity between two

signals allowed Marie-Vee Santana, Carol A. Fowler, and I to turn our

attention to the problem of quantifying interpersonal coordination

(Shockley et al., 2003).  We endeavored to evaluate the utility of CRQ in

detecting subtle postural coupling that may exist between two people

engaged in conversation.

V ERBAL C OORDINATION OF INTERPERSONAL POSTURAL

ACTIVITY—THE EXPERIMENT

The Task

The strategy of Shockley et al. (2003) was to track the postural

activity of two people engaged in a conversation.  In order to generate

conversation, a puzzle task was used that required participants to

determine the differences between two similar cartoon pictures.
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Similar types of puzzles can often be found in puzzle books or

newspapers.  Typically, however, the task involves a single person

comparing two pictures.  The innovation we introduced was to give

each member of a participant pair one of the two similar cartoon

pictures.  We did not allow participants to visually inspect each other’s

picture during the course of a trial.  This constraint left only verbal

interaction to facilitate finding differences between the two pictures.

This method was quite effective in generating normal conversation.

Furthermore, the participants expressed genuine interest in the task

both during and after data collection, as indicated by their reluctance

to stop at the end of a trial and their unsolicited positive comments

following the data collection session.

In recognition that visual interaction may influence postural sway

in addition to the verbal interaction required by the task, two

independent variables were factorially combined, Task Partner and

Body Orientation.  There were two levels of each variable (see Figure

4.6).  A participant’s Task Partner could be either the other member of

the participant pair (Participant) or one of the experimenters

(Confederate), who was seated out of view.  The Body Orientation of the

participant pairs involved either facing each other (Facing) or facing

away from each other (Away).  In all conditions, participants were

instructed to discuss their pictures with their task partner and

determine as many differences as possible between the two pictures

over the course of two minutes.  In all trials, the dependent measures

were the postural sway of the two members of a given participant-pair,

irrespective of the Task Partner on a given trial.  Thus, the shared

postural activity between two persons engaged in conversation with
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Figure 4.6.  Method for evaluating interpersonal postural constraints involved in cooperative
conversation.  Participants faced toward or away from one another and conversed with each
other or a confederate (C).  Figure adapted from Shockley, Santana, and Fowler (2003).

each other could be compared to the shared postural activity of the

same two persons engaged in conversation with others.  Greater

shared postural activity (i.e., greater %REC) was expected when

participant pairs were conversing with each other than when

participant pairs were conversing with confederates.

Data Collection and Reduction

A Polhemus FasTrak magnetic motion capture system (Polhemus,

Inc., Colchester, VT) was used with 6-D Research System software (Skill

Technologies, Phoenix, AZ) to track the participants’ movements in the

anterior-posterior direction.  Sensors were placed using Velcro straps

at the waist and the forehead.  For the purposes of this chapter I am

only reporting data measured at the waist.  Participants stood on

opposite sides of the magnetic field emitter and were each
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approximately 18 inches away from the emitter.  Data columns of

displacement in the anterior-posterior direction were extracted from

the data file recorded by the motion capture software.

Unless otherwise indicated, for the subsequent analyses

Recurrence Quantification Analysis software was used (the package is

available free of charge from http://homepages.luc.edu/~cwebber/).

Detailed instructions for how to use the recurrence analysis software

can be found in the README.TXT file, which is provided with the

software.  It is assumed that the user has a working knowledge of an

MS-DOS environment.  The program ZSCORE.EXE was used to convert

our displacement data into z-scores to ensure a common scale for all

participants.

CRQ Parameters

Prior to calculating recurrence quantities, one must select the

settings for seven parameters (embedding dimension, delay, range,

norm, rescaling, radius, and line length).  Embedding dimension,

delay, and radius are among the most challenging parameters to

determine.  When the system in question is of unknown dimensionality

and periodicity (e.g., postural sway data), one method for estimating

these parameters is to evaluate the number of recurrent points for a

range of these parameter settings (Zbilut & Webber, 1992; Riley et al.,

1999; see Pellecchia & Shockley, Chapter 3).  For a range of parameter

settings it is important that there are smooth changes in the number of

recurrent points in response to small changes in parameter values (see

Trulla, Giuliani, Zbilut, & Webber, 1996).  A large, discontinuous

change in the number of recurrent points may correspond to a change

in the scale of activity in the system to which the recurrence measures
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are sensitive.  Selecting parameters that are near such a threshold of

sensitivity could, therefore, yield changes in recurrence values due to

crossing the threshold, rather than changes due to experimental

manipulations.  Thus, it is safer to use parameter values within a range

that exhibits smooth changes in %REC.

The program KRQS.EXE may be used to calculate %REC for a

range of the three parameters in question.  For each execution of the

program, one inputs the file names corresponding to the two time

series to be compared as well as an output file name to which the

recurrence measures are saved.  In our case, the input files

corresponded to the z-score time series for Person A and Person B,

respectively, of a given participant pair for a given 2-minute trial.  After

entering the command to execute KRQS.EXE, one is prompted for the

minimum and maximum values for delay, embedding dimension, and

radius.

Embedding Dimension. Embedding dimension specifies how

many dimensions will be used in reconstructing the phase space.  As

discussed previously, the goal is not to determine exactly how many

dimensions the system has.  The goal is to be confident there are

sufficient embedding dimensions to allow the dynamics of the system to

be revealed without distortions.  Webber (2004) suggested, for

physiological data, starting with embedding dimensions between 10

and 20 and working downward.  Based on Webber’s suggestion and

previous investigations of postural activity using recurrence analysis

(e.g., Balasubramaniam, Riley, & Turvey, 2000; Riley et al., 1999), I

elected a range of 8 through 14 embedding dimensions for the present

discussion.
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Delay. The delay parameter specifies the time lag to use for the

time-delayed copies of the original time series (i.e., the surrogate

dimensions in the reconstructed phase space). For illustrative purposes

of this chapter and data processing economy, I selected delays ranging

between 15 and 25 data points.  A larger range, however, would

certainly be appropriate.  The sampling rate of the motion capture

system used in the present study was 60 Hz.  This means that delays of

15 to 25 data points would correspond to time delays of 0.25 to 0.42 s.

Radius. The radius parameter specifies the Euclidean distance

within which points from the two time series are considered neighbors

(i.e, recurrent) in the reconstructed phase space.  The selected radius

should yield a sparse recurrence matrix.  That is, %REC should remain

low (no larger than 5%), but not so small as to produce a floor effect

(%REC at or near 0%). I selected radii ranging between 20 and 40, with

a step size of 2.  Given that mean distance rescaling will be selected

(see below), the radius corresponds to the percentage of the mean

distance separating points in reconstructed phase space.

Norm.  The norm parameter specifies how distances are

normalized in reconstructed phase space. I selected Euclidean

normalization, which is consistent with previous studies using

recurrence analysis to evaluate postural activity (see Riley, et al., 1999;

Riley & Clark, 2003).

Rescale. The rescale parameter determines the method used to

rescale the distance matrix (i.e., matrix of all distances among postural

data points of person A and person B). Given that each participant pair

may have had different distance magnitudes, Shockley et al. (2003)

elected to rescale the distances among the points to the mean distance.
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This served to intrinsically define the inclusion radius (see above) to a

percentage of the average distance separating the postural trajectories

of a given participant pair, rather than using an arbitrarily defined

threshold (e.g., an absolute Euclidean distance).  A distance

corresponding to the mean distance separating postural locations in

reconstructed phase space would, therefore, have a value of 100.  Mean

distance rescaling also serves to minimize the influence of an outlier

value (e.g., large postural excursion due to laughing or sneezing)—as

compared to rescaling to the maximum distance, for example.

Range. Each time series consisted of 7200 data points (120

seconds of data at 60 Hz).  In the present study, there is no reason not to

include as many data points as possible.  Therefore, the first data point

should be 1 and the last point should be 6875 (given a maximum

embedding dimension of 14 and a maximum delay of 25).  These values

guarantee the use of the maximal number of data points and the same

number of data points within each surrogate dimension in the phase

space (see Pellecchia & Shockley, Chapter 3, for a detailed explanation

of how to determine the last data point). The value for the last data point

does not need to be determined, however.  The software will provide a

range of values, and the user can simply enter the maximum in the

range presented by the software.

Line Length. Line length specifies the number of consecutive

recurrent points required to define a line segment. This parameter

should be set to two points (the minimum option) unless one has reason

to believe that a more conservative estimate of a line is warranted.

The next step in determining parameters for CRQ is to randomly

select a few trials from each experimental condition and execute the
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program KRQS.EXE to compute recurrence measures for the selected

parameter ranges for the selected trials.  For illustrative purposes, I

selected four sets of data to submit to KRQS.EXE.

Surface Plots for Parameter Selection in CRQ

One method of evaluating the %REC values for the selected

range of parameter values is to use surface plots, which can be

generated in the MatLab software environment (Mathworks, Inc.,

Natick, MA).  For each embedding dimension, one can plot the %REC

values returned from KRQS.EXE for a given data set as a surface (see

Figure 4.7).  A surface corresponds to a numeric matrix (stored in a

MatLab variable that I arbitrarily named “rec”).  The number of rows of

the matrix corresponds to the number of values of radius used by

KRQS.EXE and the columns of the matrix correspond to the number of

values of delay used by KRQS.EXE.  The values in the matrix correspond

to the %REC values for one set of data (generated by KRQS.EXE) for

each radius (rows) and delay (columns) for a given embedding

dimension.  To review, the extents of the two sides of each surface

correspond to the range of radius and delay, respectively.

To create a surface plot in MatLab, one needs two vectors—one

of extents corresponding to the numbers of columns and rows of the

%REC matrix, respectively, and the matrix that I called “rec” in MatLab.

First, create two MatLab vectors—“radius” [20 22 24 26 28 30 32 34,36

38 40] and “delay” [15 16 17 18 19 20 21 22 23 24 25]—to be used for all

surfaces plotted.  As discussed above, the matrix should be created

from the %REC values returned from KRQS.EXE.  The values of %REC

will, therefore, be different for each trial analyzed.  The matrix will,

accordingly, need to be re-created for each surface to be plotted.  Each
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Figure 4.7. Shared postural locations (%REC) in reconstructed phase space for a randomly
selected subset of data from Shockley, Santana, & Fowler (2003) for a range of values of the
following parameters: Embedding dimension, delay, and radius.  Each surface in a given plot
corresponds to a different data set and each plot represents the same data sets for the
parameter ranges.

surface plot is created by the following command: surf(delay, radius,

rec).  To plot multiple surface plots on one graph (as seen in Figure

4.7), type ‘hold’ after the first surf command.  I have found that it is most

useful to create a different plot for each embedding dimension.  To

generate new plots, open a new figure window and repeat the

procedure.  For illustrative purposes I have plotted four of the eight

embedded dimensions (see Figure 4.7).
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Inspection of Surface Plots

Embedding Dimension. Notice in Figure 4.7 that the recurrence

values for the sampled data files tend to bottom out (%REC equals 0)

for higher values of the delay and low values of the radius for

embedding dimensions 12 and 14.  Thus, an embedding dimension of

10 allows sufficient unfolding of the time series and still yield a sparse

recurrence matrix (i.e., recurrence values just above 0%).

Delay. The particular delay selected is often arbitrary for

postural data.  What is most important is that the patterning of

recurrence measures is consistent across a range of delay values.  If so,

one can be confident that any observed differences across

experimental conditions are not artifacts of the delay.  Shockley et al.

(2003) selected a delay of 25 data points, which fits these criteria.

Radius . As discussed above, the radius is the maximum

Euclidean distance by which points can be separated in reconstructed

phase space and still be considered recurrent points.  One should

choose a value of radius that ensures that the number of recurrent

points is reasonably low (so as to avoid global recurrence, i.e., all

points recurrent).  Webber (personal communication, June 2000)

suggested that recurrence should be approximately 1%.  Given that

CRQ must be performed on multiple trials of multiple participants,

however, Webber’s prescribed recurrence range tends to be a bit too

low.  This is so because data from some trials may yield %REC = 0 for

the same parameter settings that yield 1% recurrence for other

participants.  For biological movement data, I have found that

recurrence of around 3%-5% for a randomly selected subset of data
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tends to yield non-zero %REC values for all subjects, but still offers

sufficiently low recurrence.

In summary, Shockley, et al. (2003) selected a delay of 25 data

points, an embedding dimension of 10, and a radius of 30% of the mean

distance separating points in reconstructed phase space.  Modest

changes of each of the values of those parameters does not change the

patterning of results found by Shockley et al. (2003).

Full Analysis

After the parameters to be used for the analysis have been

selected, the next step is to run the CRQ with the selected parameter

settings on the entire set of experimental data. Shockley et al. (2003)

used KRQE.EXE to compute the recurrence variables—%REC, %DET,

MAXL, and ENT—for each participant pair. The reason for using

KRQE.EXE, rather than KRQD.EXE, for example, is that the former allows

multiple analyses to be executed in batch mode, rather than waiting for

each file to be analyzed and then typing the next command for the next

file to be analyzed.

To review, the following parameter settings were used with

KRQE.EXE: delay = 25, embedding dimension = 10, range = 1-6875,

norm = Euclidean, rescaling = mean distance, radius = 30, and line

length = 2.  The program KRQEP.EXE was used to generate a parameter

file to be accessed by the commands in the batch file.  This obviates the

need to type in the parameters for each file to be analyzed.  An ASCII

(text), tab-delimited batch file (filename.bat) was set up such that each

row corresponded to the MSDOS command for analyzing one file using

KRQE.EXE.  The number of rows corresponded to the number of files to

be analyzed (see README.TXT file for complete instructions).  Program
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run time for the present data was several hours. Mean values for the

recurrence measures were calculated for the four trials of each

condition. Separate ANOVAs were conducted on each recurrence

measure for postural time series pairs.

Results of Shockley, Santana, & Fowler (2003)

Among the measures derived from the tallied cross recurrence

values, %REC (the ratio of the number of recurrent points to the

number of possible recurrent points) and MAXL (the length of the

longest trajectory of consecutive parallel recurrent points; a measure of

the stability of the shared activity) were found to be significantly

influenced by the experimental manipulations. Representative cross

recurrence plots are provided in Figure 4.8A and 4.8B.  The plots are

organized such that the postural time series of one member of a

participant pair (A) is indexed along the abscissa while the postural

time series of the other member of a participant pair (B) is indexed

along the ordinate.  Points are plotted in the cross recurrence plot when

the trajectories of the unfolded time series, A and B, occupy the same

area of the reconstructed phase space within some radius of inclusion.

That is, if a given position (i) in time series A occupies the same position

in reconstructed phase space as the position (j) of time series B (i.e.,

A[i] = B[j]), then the point is considered recurrent (see Figure 4.5).

Shockley et al. (2003) found greater shared postural activity among

pairs of participants engaged in conversation with each other as

compared to the activity shared among the same participants engaged

in conversation with confederates, regardless of visual interaction.

They also found that trajectories of participant pairs stayed

parallel longer when the participant pairs were engaged in
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Figure 4.8. (A) Sample cross recurrence plot of the postural activity of two persons engaged in
conversation with confederates. (B) Sample cross recurrence plot of the postural activity of two
persons engaged in conversation with each other.  Both are examples of the participant-pair
facing away from each other.  Indices along the abscissa (i) and the ordinate (j) corresponds to
data points of person A and B, respectively of a participant-pair.  Illuminated pixels correspond
to shared postural locations in reconstructed phase space.
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conversation with each other than when participant pairs were

engaged in conversation with others.  As far as the authors could

determine, their observations mark the first objective measures of

interpersonal postural coordination.  Representative examples of a

linear method of shared signal activity—coherence analysis—are

provided in Figure 4.9.  In Figure 4.9A, the participants were speaking

to each other.  In Figure 4.9B, the participants were each speaking to a

confederate.  Coherence analysis is effectively a correlation of Fourier

spectrum power estimates compared across two signals for a range of

frequencies.  Note that there are not distinct frequencies at which

power is correlated in either plot.  Furthermore, on average the

coherence for the two plots is the same (~0.085).   This is consistent with

the Shockley et al. (2002) finding that CRQ is a more sensitive measure

of coupling than linear measures.  Perhaps of greater importance,

however, is the fact that CRQ is a more appropriate method for

quantifying shared postural activity than linear methods, given that

CRQ does not require the assumptions of normal distributions and

stationarity of the data required by linear methods.  That is, any

significant effects that may have been discovered with linear methods

would be suspect due to violations of the assumptions of those methods.

It is encouraging that recurrence strategies continue to prove

their usefulness for the study of postural control.  It remains to be seen

how sensitive of a measure CRQ may prove to be.  For example, is the

degree of postural coordination scaled by the degree of cooperation of

a given verbal interaction?  Giles (1973) recognized changes in

coordination among conversers with his observation that conversers in

a cooperative and friendly setting show convergence of dialects,  while
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Figure 4.9. (A) Representative example of a coherence plot of the postural activity of two
persons engaged in conversation with confederates. (B) Representative example of a
coherence plot of the postural activity of two persons engaged in conversation with each other.
Both are examples of the participant pair facing away from each other.  Frequency (Hz) is
plotted along the abscissa and the ordinate corresponds to the coherence between the power
of the Fourier spectra of the individual time series of the participant pair.
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hostile conversations show divergence of dialects.  Will %REC

decrease in a less cooperative situation as compared to a more

cooperative situation? Furthermore, it remains to be seen what is the

mechanism of coupling that was observed by Shockley et al. (2003).

Investigations are currently under way to determine what aspects of the

interaction (e.g., speaking rhythms, conversational turn-taking, word

similarity) facilitate the type of shared postural activity that was

observed.  I leave these questions to future investigations.
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