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An unexpected and exotic brand of variability resides in the

trial-by-trial fluctuations of human judgments of passing time.  The

pattern, called 1/ƒ or pink noise, is a construct from fractal geometry.

Pink noise is associated with complex systems whose components

interact on multiple time scales to self-organize their behavior

(Bassingthwaighte, Liebovitch, & West, 1994; Jensen, 1998; Van Orden,

Holden, & Turvey, 2003; see also Aks, Chapter 7).  This chapter

describes the phenomenon of pink noise, and explains how to conduct

statistical analyses that identify it in response time data from

elementary cognitive tasks.

It was Gilden, Thorton, and Mallon (1995) who first reported pink

noise in response time variability during the fundamentally cognitive

task of estimating fixed intervals of time.  Gilden et al.’s temporal

estimation task required participants to repeatedly estimate fixed

intervals of time—in essence to “become a clock”—by pressing a

button at each instant they believed a specific time interval had

elapsed.  Separate laboratory sessions were administered for each of

several fixed target time-interval conditions.  In each session 1000 time-

interval judgments were collected in succession.  The time-interval

conditions ranged from 1/3 s up to 10 s.  Of course, no participant’s

succession of time-interval judgments was exactly the same on every

trial.  Instead they varied from trial to trial.  Lining up the series of

successive time estimates in the strict order in which they were

collected (i.e., trial 1, 2, … 1000) yielded a trial series of response

times, which was treated very much like a standard time series in

Gilden et al.’s statistical analyses.  Pink noise was revealed in the

intrinsic residual variability that remained after the average time
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interval that each participant produced, for each target interval, was

removed from each trial series.  Thus, pink noise emerged in the

structure of the “background noise” of cognitive performance—the

intrinsic variability of a person’s judgments of passing time.

To begin to understand the phenomenon of pink noise it is

perhaps easiest to simply examine it visually.  Figure 6.1A displays an

example of an individual participant’s trial series from a temporal

estimation task that used a method similar to that of Gilden et al. (1995).

The x-axis depicts the successive trials in the experiment and the y-axis

records the participant’s time estimate on each trial, in terms of

standard deviations from their average time interval, taken across all

trials (i.e., the time estimates are normalized and graphed as z-scores).

The overall pattern of trial-to-trial fluctuation is consistent with

pink noise.  Notice the undulating “waves” of relatively longer and then

shorter time estimates that travel across the series.  One shorthand way

to describe the overall rising and falling trends is to say that the first

500 or so trials follow a giant inverted-U shape or an arc.  It is fair to say

that a similar large arc begins around the 500th trial and continues to

the end of the series of observations.  Now, look within each large arc,

and similarly shaped arcs which run across fewer trials, perhaps only

50 to 100 trials at a time, can be discerned.  Inside the smaller arcs are

even smaller ones, and so on.  Loosely speaking, the trial series is

comprised of a progression of nested, similarly shaped arcs or patterns

of fluctuation.  Of course, there is nothing special about the arcing

inverted-U shape; you could imagine M or W shapes, or even right-side

up Us, for example.  What is important in this example is the concept of

a shape or pattern that is comprised of smaller copies of  essentially the
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Figure 6.1. (A) A trimmed, detrended and normalized trial-series of 690 ms time interval
estimates for a single participant.  The x-axis indexes the successive trials in the experiment,
the y-axis indexes the time interval judgments, relative to the overall mean and standard
deviation of the trial series.  (B) Results of a power spectral analysis, in linear units.  Frequency
is plotted on the x-axis, from lowest (near the origin) to highest.  The y-axis indexes the power
or relative energy of each frequency.  Larger values indicate more power.  (C) Results of the
same spectral analysis plotted in (B), on double-logarithmic axes.  The negatively accelerated
linear relation, with a slope less than 0 but greater than –1, is consistent with pink noise. (D)-(F)
The same succession of plots as (A) through (C) for a randomly reshuffled “surrogate” version
of the data depicted in (A).  Random reshuffling destroys the natural trial ordering and yields
white noise.  (E) depicts the spectral analysis of the white noise on a linear scale.  There is no
systematic variation in power as a function of frequency.  This power spectrum is characteristic
of white noise; all frequencies have roughly equal power.  (F) depicts the same power spectrum
on double-logarithmic coordinates.  The slope of the regression line is approximately zero,
which is consistent with white noise.
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same shape—the notion of a nested structure of similar-shaped

fluctuations.

If you are not sure you see this structure, simply compare Figure

6.1A with Figure 6.1D, which represents exactly the same data set

depicted in Figure 6.1A, but where the order of the successive data

points was randomly shuffled.  The shuffling procedure destroyed the

nested, statistically self-similar pattern of trial-to-trial fluctuations

characteristic of pink noise.  The random rearrangement of the series

yields a pattern called white noise.  Notice that just about any portion of

the shuffled data series depicted in Figure 6.1D could be used as

relatively good “stand-in” for any other portion of the series.  This is not

true for the trial-ordered data plotted in Figure 6.1A, for which most of

the observations between trials 500-600 fall below the overall mean,

while the majority of the observations between trials 800-900 fall above

the overall mean.

The two different arrangements of the same data set are quite

distinct, illustrating the difference between pink noise and white noise.

For pink noise, the local means and standard deviations depend on

where in the series the sample was taken. White noise indicates

statistical independence from observation to observation, and local

sample means and standard deviations do a good job of describing

other local samples, and an overall population mean.  This fact about

white noise forms the cornerstone of inferential statistics, such as t-

tests, analysis of variance (ANOVA), and regression.

In the context of response time research pink noise refers to a

statistically self-similar (see Liebovitch, Chapter 5) pattern of trial-to-
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trial variability.  The pattern is structured such that persistent, long-

term fluctuations across several hundred trials nest within themselves

progressively smaller, proportionately scaled fluctuations across a few

decades of trials.  Nested within those fluctuations, one finds even

smaller patterns of fluctuation, and so on.  Pink noise is unexpected

from the perspective of conventional statistical intuitions inherited from

the standard linear statistical tools of behavioral science research.

Those intuitions lead to an expectation that successive individual time

judgments, decisions, or other elementary cognitive performances

should vary unsystematically or randomly from trial to trial.  That is,

individual observations are assumed to be statistically independent.

After all, it is properties of the presented stimulus that are

conventionally assumed to be driving a participant’s response, not

aspects of the previous response.

Since Gilden et al.’s (1995) report, pink noise was uncovered in

the trial-by-trial variability, or trial-series, of a wide range of standard

cognitive psychology laboratory tasks that collect response times.

Examples include simple reaction time, speeded word naming, choice

reaction time, lexical decision, and mental rotation, among many others

(e.g., Gilden, 1997; Kelly, Heathcote, Heath, & Longstaff, 2001; Van

Orden et al., 2003).  The pattern is not limited to cognitive activities;

pink noise appears in measurements of human performance that use

dependent measures other than response time, such as patterns of eye

movements (Aks, Zelinsky, & Sprott, 2002), postural sway (Riley, Wong,

Mitra, & Turvey, 1997), and self-reports of changes in mood over time

(Delignières, Fortes, & Ninot, in press; see Gilden, 2001, and Van

Orden et al., 2003, for reviews).
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The goal of this chapter is to provide a primer to the geometric

concepts and statistical techniques that are necessary to characterize

pink noise in trial series of response time measurements derived from

cognitive performances.  The first step is to introduce three interrelated

concepts from fractal geometry: Self-similarity, scaling, and fractal

dimension.  Those ideas motivate statistical analyses that are aimed at

the identification of fractal patterns in data from empirical phenomena.

A description of a simple temporal estimation task, modeled in large

part after the method used by Gilden et al. (1995), follows the

introductory sections.  A trial-series resulting from the illustrative

temporal estimation task is used to provide a practical context for a

tutorial presentation of the statistical procedures involved in a fractal

analysis of response time data, including spectral density estimation

and fractal dimension estimation.  Potential theoretical implications of

pink noise are briefly discussed in the final section of the chapter.

FRACTAL PATTERNS

Self-Similarity and Scaling

Two key constructs in fractal geometry are pattern and self-

similarity of pattern.  The parts of fractal objects are composed, in some

way, of copies of the whole object (Feder, 1988; Mandelbrot, 1982; see

Liebovitch, Chapter 5).  Ideal geometric fractals may be composed of

exact replicas of the whole object—they are strictly self-similar.  By

contrast, statistical fractals are self-affine, or statistically self-similar; they

are composed of statistically equivalent replicas of the whole object.

Naturally occurring fractals usually exhibit statistical self-similarity.
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A contrast between the left and right sides of Figure 6.2

illustrates this distinction.  The left side of the figure depicts a

Sieripinski Gasket, a classic mathematical fractal.  It was generated by

removing a white, smaller triangle, with vertices that fall at the

midpoints of the sides of the largest, gray outer “initiator” triangle.

Next, smaller similar white triangles were removed from the three new

triangles that were formed, and their centers were, in turn, removed.

The construction process can be continued indefinitely (see Peitgen,

Jürgens, & Saupe, 1992, for details).  The Sieripinski Gasket is

comprised of smaller, exact copies of itself—it is strictly self-similar.

The top panel on the right side of Figure 6.2 depicts 8192 observations

of idealized pink noise, a statistical fractal.  The middle panel “zooms

in” on the center 4096 observations of the same series depicted in the

top panel, and the bottom panel depicts the center 2048 observations

that appeared in both the middle and top panels.  When the x- and y-

axes are appropriately scaled, the pieces of the series are visually and

statistically indistinguishable from the overall series—pink noise is

statistically self-similar, or self-affine.

Fractal patterns in nature are composed of nested forms that

cannot be measured on a single scale of measurement.  The result of a

measurement depends on the scale, or size of the increment used to

take the measurement (Bassingthwaighte et al., 1994; Mandelbrot,

1982; Schroeder, 1991; see also Liebovitch, Chapter 5).  For example,

the measured length of the British coastline increases proportionally as

the scale of the "yardstick" used for measurement is shortened from

kilometers to meters.  An even shorter, centimeter scale of

measurement  would  result  in  a  further  proportional  increase  in  the
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Figure 6.2.  The object depicted on the left side of the figure is a classic self-similar
mathematical fractal called a Sieripinski Gasket.  It is generated by removing successive
generations of triangles (white) from the centers of the gray triangles.  The three panels on the
right side of the figure illustrate how idealized pink noise is statistically self-similar.  The middle
panel zooms in on a piece of the series depicted in the top panel, and the lower panel zooms in
on a piece of the series depicted in the middle panel.  Each magnification of the pieces of the
series results in a new series that looks essentially the same as the original series.

measured length of the coastline.  The changing measurements arise as

a consequence of using regular line segments, the yardstick, to

approximate the irregular, nested, self-similar structure of coastal bays
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and peninsulas.  The length measurement increases when a bay or

peninsula that was not captured at a lower resolution adds length at a

higher resolution.  Thus, as smaller and smaller sub-bays and sub-

peninsulas are resolved, they add to the length of the coastline.

When measurements change as a function of measurement scale,

there is no "true" or characteristic value for the measurement.  The

length of the British coastline grows in proportion to the precision of the

yardstick used to measure length.  This proportional power-law scaling

relation between the size of the yardstick and the costal length implies

that results of a measurement procedure depend on the measurement

scale or sampling unit used to take the measurement (over a finite

range of scales).  A power-law scaling relation, a linear relation

between the logarithm of the scale and the logarithm of the

measurement result, is commonly observed in natural fractal

phenomena, and is symptomatic of self-similar patterns

(Bassingthwaighte et al., 1994, Peitgen, Jürgens, & Saupe, 1992).  It is

the functional form of the scaling relation that, in turn, is used to

describe and even model subtly different aspects of coastlines (e.g.,

Mandelbrot, 1982).

Scaling in Statistics

What is measured with a statistical sample depends on what

statistic is computed on the sample of observations.  A sample mean is

a measure of location—the center or balance point of a distribution of

observations.  If the variability in the sample is unsystematically but

symmetrically dispersed about the mean, and the observations are

statistically independent of one another, then a sample mean identifies
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a location on the number line of the dependent measure that best

characterizes the level or amount of the measurement in the context of

sampling error.  For instance, mean response time is used to estimate

the duration of time that passes between the presentation of a stimulus

and the collection of a response in a response time task.  However,

response time distributions are typically positively skewed, and the

pattern of pink noise implies that successive observations are not

statistically independent.

Thus, patterns of variability constrain the utility of a sample mean

as a point estimate of a location or amount.  Dispersion measurements,

like the standard deviation, are intimately linked to location

measurements.  They impart information about disagreement among

the individual measurements, and indicate how much a measure of

location, such as the mean, can be trusted.

Scale magnification makes intuitive sense for an object such as

the coastline of Great Britain.  The statistical counterpart to a

measurement scale is sample size.  Obtaining fewer statistical samples

corresponds to using measurements at a lower resolution; larger or

more numerous statistical samples correspond to measurements at a

higher resolution.

At first, the relation between sample size and scale may not be

obvious, but remember the example of Great Britain’s coastline.  The

example helps to develop an intuitive analogy about what it means that

no characteristic amount of variability may exist in response time data.

The coastline scaling relation indicates that smaller spatial features are

nested within larger spatial features. The key point to keep in mind
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about the coastline is the measurement result (the length) depends on

the scale used to take the measurement.

Statistically self-similar patterns of fluctuation affect statistical

estimates of location and dispersion, like the mean and standard

deviation or variance (see also Bassingthwaighte et al., 1994, pp. 33-

41).  The answer to the question “how long” for a coastline is supplied

in terms of a length measurement.  The answer to the same question for

a response time task is supplied by a parameter estimate, such as mean

response time.  In contrast to length scales, where the smallest units

yield the most accurate measurements, larger sample-sizes—a larger

N—corresponds to a more precise measurement scale in statistics.  This

may seem counterintuitive, but it is conventional to assume that

certainty in estimates of a population parameter—parameter

resolution—increases as sample sizes increase (i.e., the central limit

theorem).

As mentioned, the ability of a statistic such as the mean to act as a

gauge of location depends crucially on the inherent patterns of

variability in the data.  If the measurements emerge from a process with

outputs that conform to standard statistical assumptions, those of the

central limit theorem, for example, a sample mean can be trusted to

reliably penetrate the variability and reveal increasingly reliable

estimates of characteristic values—population parameters—as sample

size is increased.

Nevertheless, another possibility exists.  Suppose trial-by-trial

response time measurements are comprised of a statistically-self

similar pattern of positive correlation, where local patterns of
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correlation, across just a few successive trials, are nested within

increasingly more global and proportionally scaled (enlarged) patterns

of positively correlated fluctuations, as broader and broader runs of

consecutive trials are spanned.  This is essentially a description of pink

noise, and just as for the coastline, a change to a more detailed or

inclusive scale yields essentially the same pattern that was observed at

the less inclusive, lower-resolution scale.

Keeping in mind the analogy to the coastline, it is easier to begin

to understand how nested patterns of fluctuation lead to counterintuitive

statistical properties.  The value of any given lower-resolution locally

computed mean or standard deviation, that includes just a few adjacent

samples, depends crucially on where in the trial-by-trial series it was

taken—did it come from a waning “bay” or a waxing “peninsula,” for

instance.  Increasing the resolution of the sample by including more

and more adjacent observations results in the inclusion of more and

larger bays and peninsulas.  The implication of each increase in sample

resolution is the existence and inclusion of even larger scale

fluctuations that reach well beyond the scope of each new, larger scale

of resolution.  Larger samples simply admit a broader range of

variability.  The resulting increase in variability created by widening

the window of observation may outpace a sample statistic’s ability to

stabilize about a particular characteristic value, in the normal way,

through the process of aggregating larger and larger samples.

As such, the utility of the mean and standard deviation as simple

measures of location and dispersion may be foiled because of the

proportional, nested patterns of fluctuation.  Different sample means

and standard deviations, taken at different locations or times, would
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tend to disagree in their location and dispersion estimates (up to the

limits of the system or sample), resulting in a persistent heterogeneity,

or disagreement among the sample statistics themselves.  In this way,

patterns of variability that are comprised of nested, interdependent,

statistically self-similar fluctuations hamper the ability of these statistics

to provide a uniform summary or gauge of certain kinds of data sets.

Simply put, the concept of a summary statistic is not neatly applicable to

a heterogeneous process.

All this is not to say that descriptive statistics such as the mean

and standard deviation are not useful or applicable to fractal or

nonlinear science—in many cases they are essential analytical tools.  It

is really only the semantics of those descriptive measures that is altered

in the analysis of a fractal process.  Additional and crucial statistical

information resides at a higher level, in the manner in which the values

of descriptive statistics change as sample size (i.e., measurement

resolution) is systematically changed, rather than at the level of any

particular summary value that uses a particular sample size.  That is, the

manner of disagreement across different sample sizes becomes a

primary statistical gauge for a fractal analysis.

In the context of response time research, a fractal dimension

analysis describes how response-time variability scales with sample

size.  Essentially, it is a statistical analysis that is analogous to taking

measurements of a coastline’s length using different ruler sizes and

reporting how the length changes as the ruler size changes—the fractal

dimension analysis determines a scaling relation between sample size

and sample variability.  The goal of the fractal dimension analysis is to

describe the changes in the variability of a measurement across a
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range of sample sizes (measurement resolutions) in terms of a power-

law scaling relation.

Fractal Dimension

Self-similarity and self-affinity across multiple scales of

resolution often gives rise to objects or patterns that occupy noninteger

or fractal dimensions.  Essentially, a fractal dimension refers to the

spatial dimension of an object whose dimension falls between the

standard Euclidean integer dimensions of one, two or three (see

Bassingthwaighte et al., 1994).  Mandelbrot (1982) explained how the

dimension of an object is partly determined by the perspective of the

observer (the entry level of the analysis).  A tautly stretched piece of

thread closely resembles a line, an ideal one-dimensional Euclidean

object.  Tightly weaving the thread, back and forth, results in a piece of

fabric, an ideal two-dimensional object.  Thus, a line can be rearranged

so that it occupies area.  Rolling the thread onto a spool yields an object

that occupies volume in 3-D space.  Of course, if the spool of thread is

viewed from a great distance, its dimension appears to collapse to zero,

a point.

One way to understand the link between Euclidean geometry

and fractal geometry conceptually is to think of fractal geometry as a

generalization or elaboration of the standard Euclidean geometry of

lines, squares, cubes, and so on.  Euclidean objects only occupy

integer dimensions, 1 for a line, 2 for a square, and so on.  Fractals,

however, may occupy noninteger dimensions, dimensions that fall in

between 1 and 2 or between 2 and 3.  How can this be?  Refer again to

Figure 6.1A, the normalized series of temporal estimates graphed in the
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order in which they were collected.  They are points connected by a

line.  Clearly, if every successive time estimate was identical,

connecting the points would form a line, and the series would have a

Euclidean dimension of one.  But any departure from the ideal form of a

line begins to occupy or “leak into” the next higher (second, in this

case) Euclidean dimension.  It is in this spirit that fluctuations in trial-by-

trial response times may be said to partly occupy or leak into the next

higher Euclidean dimension.  In a sense, the variability of time

estimates results in the series occupying area, and it will have a

dimension between an ideal one-dimensional line and an ideal two-

dimensional area.  The more jagged and irregular the graph of

response times, the more area it occupies.  It turns out that this intuitive

continuum of relative jaggedness can be characterized formally with

the help of a statistical procedure called dispersion analysis.

Dispersion analysis results in an estimate of the fractal dimension of the

trial series.  The fractal dimension characterizes the structure of the

intrinsic variability in the trial series.

Conventional statistical analyses presuppose that intrinsic

variability is white noise.  White noise yields a jagged and irregular line

with a fractal dimension of 1.5, because successive observations are

statistically independent of each other.  Its fractal dimension indicates

the extent to which white noise occupies 2-D space.  White noise is

uncorrelated noise.  By contrast, the successive observations of pink

noise tend to be positively correlated.  This results in a less jagged trial

series, and lower fractal dimensions that fall in the interval between 1

and 1.5.
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A SIMPLE TIMING EXPERIMENT

Data from a timing experiment is now used to demonstrate how

to conduct statistical analyses that may uncover fractal patterns in trial

series of response times.  Except for the setting of trimming criteria, the

required statistical techniques are the same for a host of standard

cognitive tasks that record response time as a dependent measure.

The laboratory protocol was modeled after Gilden et al.’s (1995)

temporal judgment task.  At the beginning of the experimental session

each participant was presented with about one minute’s worth of

examples of a particular time interval.  The time interval was illustrated

by repeatedly flashing a simple visual stimulus on a standard PC

monitor for the specified period of time.  Each participant was then

asked to attempt to replicate the example time interval as best as they

could, 1100 times, in succession.  Participants never received feedback

about how accurate they were in their time estimates.

The method section that follows describes a study that replicated

Gilden et al.’s (1995) essential finding of pink noise in trial series of

temporal estimates.  Since the purpose of this chapter is not to

disseminate empirical results, but to supply a detailed “how to” tutorial

on methods of fractal analysis, just a single participant’s trial series is

described in the results section (the series that appears in Figure 6.1A

was used).  The particular series was explicitly selected because it is a

very clean and clear example of empirical pink noise; it lacks artifacts

that sometimes appear in real-world data and that threaten to further

complicate this introductory discussion.



Holden

284

Method

Part icipants.  One undergraduate psychology student

participated in exchange for course credit.

Procedure. The participant was given a one-minute sample of a

target temporal interval.  The sample intervals were constructed by

presenting a visual stimulus (#######) at the center of a standard CRT

monitor controlled by a PC running DMASTR software (Forster &

Forster, 1996).  The target interval duration was 690 ms or 50 monitor

raster refresh cycles.  The samples of the 690 ms time interval were

generated by displaying the visual stimulus on the monitor for exactly

690 ms, then the monitor went blank for 690 ms, at which point the

visual signal again appeared for 690 ms, and so on.  The visual stimulus

flashed on and off for about one minute.  (There is nothing special about

the 690 ms duration; the monitor’s vertical raster-refresh rate was 72

Hz, or once every 13.8 ms, and 13.8 times 50 equals 690).

On each temporal estimation trial, the visual stimulus (#######)

was displayed until the participant responded by saying “/ta/” into a

microphone, or for a maximum of 10 s.  The experimental task was

paced by a computer.  Each response was followed by a 690 ms inter-

trial interval in which the computer monitor was blank.  The participant

was told to pace her responses so that the visual signal was displayed

for the same time interval she saw during the one minute sample time

interval session.  The participant completed 25 practice trials

immediately prior to completing 1100 experimental temporal

estimation trials.  The entire task took about 30 minutes to complete.
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Results

Standard statistical analyses such as regression and ANOVA are

typically used in a manner that either ignores the temporal order of the

trials in an experiment, or that treats order as a nuisance factor.  By

contrast, the patterns of fluctuation that unfold across the successive

experimental trials are the main focus of the fractal techniques

introduced here.  Thus, the analysis begins with the participant’s trial

series of temporal interval estimates arranged in the order in which they

were collected (Trial 1, Trial 2 …Trial 1099, Trial 1100).

As a practical matter, it is best to present enough trials in an

experiment to be left with at least 1024 observations after any timed-out

trials, extreme times, and outliers are removed.  Presenting 1100 time-

estimation trials left a healthy 76 trial “buffer.”  While it is possible, and

potentially informative, to apply fractal techniques to data sets shorter

than 1024 observations, the results of the analysis become less reliable

as fewer and fewer data points are used.  For example, the spectral

slopes and the fractal dimension estimates, explained shortly, tend to

become more variable as progressively shorter data sets are used

(Cannon et al., 1997; Eke, Hermán, Kocsis, & Kozak, 2002).

Additionally, the measurements should be collected as regularly in

time as possible.  A “lined up” series of measurements that were

actually collected across different experimental sessions distorts the

time scale, and the fractal analysis may not accurately characterize the

temporal structure of the series.

Trimming and Detrending.  Data trimming procedures are often

required to bring the series of time estimates (a finite, irregular natural
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object) more in line with the assumptions of spectral and dispersion

analyses.  The mathematics of spectral analysis assume an ideal,

stationary, strictly periodic process of infinite duration.  Dispersion

techniques are less assumptive and more robust than spectral

techniques but nevertheless ultimately assume that the measured

process is at least weakly stationary—that its mean and standard

deviation remain essentially the same over time (Caccia et al., 1997;

Chatfield, 1996).  If the trial series in hand happens to be a good

example of pink noise, then its mean and standard deviation probably

do fluctuate as a function of time, or trial.

In general, response time distributions are notorious for the fact

that they often contain extreme observations, and the trial series of

temporal estimates are essentially response time trial series.  No matter

their origin, a few extreme measurements or simple long-term trends

will likely distort the outcome of a fractal analysis.  It is important to

note that the main issue surrounding the decision to remove extreme

valued data points is not so much whether or not they represent

legitimate measurements, as they certainly may.  The issue is whether

their inclusion will dominate and thus distort the outcome of the

analysis.

Response time trial series typically require two censorship

passes.  The first pass eliminates times that exceed fixed extreme

truncation values; different cognitive tasks require the use of different

fixed truncation values.  Reasonable truncation points can be identified

by consulting the relevant literature for typical censorship values.

Adopt conservative truncation values from that range as a starting point

(err on the side of including more data).  When truncating an
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observation, just delete it and “close up” the series so that the deleted

observation’s two immediate neighbors themselves become

neighbors.  While this procedure slightly disrupts the time-ordering of

the series, its overall impact on the analysis is usually minimal.  To best

preserve the trial order, response times on trials that produced an

error in, for example, a choice response time task, should be included

in the trial series (see Gilden, 1997).

The main purpose of fixed-value censorship is to facilitate a

second pass through the data, which uses the series mean and standard

deviation as a censorship origin.  For temporal interval estimates, nine

observations were less than 100 ms or greater than 3500 ms and were

removed.  Then the series mean and standard deviation were

computed.  On the second censorship pass, 13 observations that fell

beyond ±3 standard deviations from the series’ mean were eliminated.

The dispersion analysis, as described below, requires the

number of observations to be an integer power of 2 (e.g., 210 = 1024).

While spectral techniques do not always strictly require a series to be

an integer power of 2 in length, the algorithms work faster when the

data series is an integer power of 2, and some computer

implementations of spectral routines do require the series to be an

integer power of 2 in length.  The two censorship passes eliminated 22

observations, for a total of 1078 remaining observations.  The first 54

observations were then eliminated to yield a series that was 1024

observations in length.

Trial series that display self-similar patterns of fluctuation are

expected to display nonstationary drift (i.e., trends) at all scales.  It can,
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however, be difficult to distinguish simple long term trends, or a very-

low frequency periodic oscillation from a nested, fractal pattern of long

range fluctuations in empirical data sets (Hausdorff et al., 1996).  This

difficulty again arises from the fact that real data sets have a finite

length.  A linear trend at the scale of the whole data set could be either

a simple linear trend, or a small piece of a fractal pattern of fluctuation

that expresses itself across scales that run far beyond the duration of

the particular sample of the process at hand.  What appears as a linear

trend across 1024 observations could be just that, or it could be part of

a proportionately scaled fractal fluctuation that runs across 2000-3000

observations.  Without the extra data, it is impossible to tell which

option is a better description of reality.  Only fluctuations that live on

scales somewhat smaller than the full length of the series can be

resolved clearly enough (i.e. statistically) to determine whether they

are consistent with a nested fractal pattern of fluctuation.

Most importantly, simple long-term trends not only have the

potential to bias estimates of spectral slopes and fractal dimension,

they may also overwhelm the analyses, and yield spurious spectral

slopes and fractal dimension statistics (Caccia et al., 1997; Hausdorff et

al., 1996).  As such, it is prudent to remove at least linear and quadratic

trends before conducting the analysis.  As a general rule, if the trial

series has fractal structure, progressively more liberal detrending

procedures will not result in dramatic changes in the overall fractal

dimension estimates (Hausdorff et al., 1996).  Nevertheless, detrending

does eliminate variability at the larger scales, in the neighborhood of

the size of the entire series, and any fractal dimension estimation

procedure, like those presented later, must be tuned to accommodate
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this fact.  Otherwise, the detrending introduces its own bias.  For the

timing trial series trends up to a quadratic were removed.  The basic

detrending procedure involves generating a least squares linear and

quadratic fit to the series, using the index of observation as the x

variable and the temporal estimate as the y variable.  One way to do

this is to use the method of Powered Vectors, in conjunction with

Hierarchical Regression (Keppel & Zedeck, 1989), which can be coded

on a spreadsheet or accomplished with standard statistical software.

The final preparatory step is to normalize the series to have a

mean of zero and a variance of one.  That is, transform the data points

into z-scores by subtracting the series mean from each observation,

and dividing each observation by the series standard deviation (SD).

Use the population formula for the SD and divide by N, the number of

data points in the series, rather than the usual bias-corrected N – 1.  The

descriptions of the spectral analysis and the dispersion analysis that

follow assume the data sets are already in this format.

Spectral Analysis.  Spectral analysis techniques provide a general

way of characterizing the correlational structure of fluctuations in a

series of successive response time measurements (Gilden et al., 1995;

Gilden, 1997).  There are several kinds of spectral techniques; what is

referred to here as a spectral analysis is a particular method called

power spectral density estimation, which yields a power spectrum of a

trial series.

Successful applications of spectral methods require a certain

amount of care, sophistication, and background knowledge.

Accessible introductions to spectral techniques are provided by
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Gottman (1981) and Chattfield (1996).  Press, Teukolsky, Vetterling,

and Flannery (1992) describe "how to" information as well as provide

source computer code for the analyses.  The information presented in

Press et al. is rather technical but nevertheless very helpful.  In fact,

much of the information presented below is adapted from more formal

treatments of the same topics in Press et al.

With the exception of the censored observations, each

participant’s trial series of time estimates is now ordered according to

the trial on which the observation was collected—the order of the

successive trials in the experiment.  Connecting the points that

represent the successive time estimates forms a complex waveform, as

in Figure 6.1A.  In a sense, a power spectral density analysis

decomposes a trial series much as a prism breaks white light into its

basic wavelengths, or colors.  Spectral analyses decompose a trial

series into a set of regular oscillations, component waves with

particular frequencies and amplitudes.  Taken together, the component

waves mimic the overall pattern of oscillation in the observed trial

series.  An intuitive grasp of spectral analysis may be gleaned by

thinking of it as a multiple regression analysis that fits a large set of

simple sine (and/or cosine) waves to the complex response time

waveform.  The period of oscillation (the inverse of frequency) and the

amplitude (relative height) of each component wave can vary.

Oscillations corresponding to quickly changing trial-to-trial "jitter" map

to a high frequency wave.  Persistent excursions in one direction or the

other from the mean of the trial series, over the course of, say, tens to

hundreds of trials, map to lower and lower frequency oscillations.  The

output of a spectral analysis is a set of coefficients that characterize the
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relative amplitudes of all the wave forms, ordered from lowest to

highest frequency.  This output is called the power spectrum of the

signal.  Loosely speaking, the spectral density coefficients correspond

to a relative sum of squares for each frequency of sine wave that is used

to fit the trial series.  This is  a bit like an r2 for each sine wave that was

passed through, or fit to, the series.  Frequencies with larger amplitude

coefficients imply more of the total variability was attributed to that

particular frequency of oscillation.

As described, this basic recipe for a spectral decomposition

procedure yields estimates of the amplitude (relative strength or

energy) of many sinusoidal frequencies, but there is little statistical

certainty in the magnitudes of any one of them.  Each amplitude

estimate is derived from just a single pass or "fit" of an individual ideal

sine wave.  Like any other statistical sample, the coefficient resulting

from that fit can be unduly influenced by idiosyncratic properties of the

data set in hand.  Put differently, the standard deviation of each

amplitude estimate for each particular frequency is huge—100% of its

value (Press et al., 1992).  Increasing the number of data points by

using progressively longer data series only allows more and more

frequencies to be estimated.  A straight spectral density analysis

always yields about half as many frequencies as there are data points

(the highest resolvable frequency oscillates back and forth on every

other data point).  Thus, analyzing the entire data sequence at once

yields maximum frequency resolution (many different sized sine waves

are approximated), but does not lower the variability in the estimate of

the amplitude for any particular frequency (see Press et al.).  In terms of

statistical certainty, the output is about as trustworthy as a factorial
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ANOVA that has many, many experimental cells, but each cell mean is

based on just one data point.

For data sets as variable as response time trial series, the

procedures for computing a power spectrum must be adapted to

balance the need to identify fluctuations over a suitably wide range of

frequencies while simultaneously minimizing error variance in the

estimation of the magnitude of any particular frequency.  This is

accomplished by breaking a single long 1024-trial series into several

shorter, overlapping series of response times.  This procedure is called

data segmenting or data blocking.  The individual power spectra

derived from each short sub-series are then averaged.  The averaging

reduces the variability in the power spectral density estimate at each

frequency; the cost is a reduction in the maximum number of

frequencies that may be estimated.

Finally, the mathematics that govern the translation from the time

domain (the trial-by-trial representation of the data) into the frequency

domain (the frequency-by-frequency representation of the data)

require the use of a procedure called data windowing. Essentially, a

difficulty emerges from the fact that real data sets have distinct

beginnings and ends, but the mathematics of spectral analysis assumes

a data set of infinite length that is, more or less, strictly periodic.  The

consequence of this mismatch is a tendency for the power or energy

associated with any particular frequency to "reverberate" or be blurred

into the amplitude estimates of nearby frequencies.  A typical data

window applies a weighting function to the segment of the trial series

that is undergoing spectral analysis.  Data windows are designed to

smooth the transition into and out of the data, and work something like
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slowly turning up “volume” of the data starting at the beginning of the

series, until it is at a maximum at the center of the series, and then

slowly turning it down to zero again by the end of the sample (see Press

et al., 1992 for details).  The data blocking, spectral density averaging,

and data windowing procedures, or similar statistical fixes that address

the same issues, are often available as standard options in many

spectral analysis computer routines.

If you are using a spectral density routine that returns the

frequencies and power (the square of the absolute value of each

amplitude) in linear units, the first step is to delete the highest (Nyquist)

and lowest frequency (DC) coefficients, and then to transform the

remaining coefficients by taking the log, base 10, of each frequency

and its corresponding power estimate.  Plot log-frequency against log-

amplitude in a scatter plot.  Reasonable evidence for inverse power-law

scaling in the form of pink noise appears as a negatively sloped linear

relation between the two variables on the log-log scatterplot. The linear

relation must span a range of at least 2 decades of frequency (i.e., 2 log

units, or 100 frequencies; Eke et al., 2000, 2002).  Since natural fractals

exhibit self-affinity across only a finite range of scales, the inverse

power-law scaling relation may break down at either the highest or

lowest frequencies, or both.  It is also notable that the strength of the

linear relation trades off with the number of frequencies that are used in

the analysis.  For a given series length, estimating the amplitudes of

more frequencies typically yields a wider scatter of points in the log-

log scatter plot.  This is a consequence of the issues relating to the

statistical certainty in the spectral coefficients, as was discussed

previously.
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The next step is to determine the value of the scaling exponent,

the α in the scaling relation 1/ƒα (where ƒ denotes frequency).  The

scaling exponent describes how the amplitude of the fluctuations

change or scales as a function of their frequency.  The easiest way to

estimate α is to determine the slope of a least-squares regression of

power as a function of frequency, using the logarithmically transformed

values.  (Technically, it is more correct to fit a least-squares power law

in the linear domain but few researchers feel this extra step is critical).

The slope of the regression line is the scaling exponent α.  Response

time series usually yield negatively accelerated slopes (recall that 1/ƒα

=ƒ-α) that, within certain boundary conditions, discussed later, indicate

pink noise, or slopes that are statistically equivalent to zero, which

suggests white noise.

One additional difficulty with the spectral method is that the high

frequency portion of the power spectrum can sometimes be

“whitened,” which appears either as flattening to zero slope at the

highest frequencies or as combination of linear and U-shaped quadratic

trends in the log-log regression that looks a bit like a tilted and mirror-

reversed J.  Figure 6.1C and Gilden et al.’s (1995) plots for the shorter

time estimates display evidence of this pattern.  The flattening at high

frequencies may simply indicate a breakdown in the scaling relation at

the highest frequencies, but in response time trial series it was linked

to issues related to experimental design and measurement procedures

that add sources of white noise to the signal (Gilden et al., 1995; Gilden,

1997; Gilden, 2001; Van Orden et al., 2003).  For instance, very high

frequency oscillations that unfold on a pace faster than the trial-by-trial

pace of measurement may be “aliased” into the power of measured
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frequencies.  That tends to whiten the high-frequency end of a 1/ƒ

spectrum.  Aliased frequencies refer to oscillations that live outside of

the measured frequency range, and that are misinterpreted by the

spectral analysis as different frequencies that fall within the measured

range of frequencies (Press et al., 1992).  It is similar to the way a

person dancing in relative dark under a regularly flashing strobe light

can be perceived as not moving, or to the apparent, but false,

appearance of backward rotation of spoked wheels that one sometimes

notices in old films. Excluding the highest frequencies in the log-log

regression is often recommended to avoid the whitening of the high-

frequency end (Eke et al., 2000, 2002).

The details of how the spectral analysis on the temporal

estimates were conducted on the trial series appearing in Figure 6.1A

can be summarized as follows.  The spectral analyses resulted from

averages of seven successive power spectra computations taken across

successive sub-blocks of 256 trials.  Each sub-block was multiplied by a

triangular (Bartlett) window and the power spectrum was computed.

The trial series was then shifted by 128 trials (1/2 the sub-block length)

and a new power spectrum was computed.  This process was repeated

until the end of the series was reached.  Thus, the power spectrum

resulting from each participant's trial series was based on an average of

seven (semi-independent) samples of the data set.  This process

yielded estimates of 129 (n/2 + 1) frequencies, but the highest and the

lowest frequency were dropped, resulting in a total of 127 frequencies.

Figure 6.1B displays the results of the spectral analysis on linear

scales.  The x-axis depicts frequency, ranging from low to high.  The y-

axis depicts power, the square of the absolute value of each amplitude.
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Figure 6.1C displays the results of same spectral analysis, now

depicted on log-log scales.  The approximately linear relation between

the two variables in the log-log domain implies an inverse power-law

scaling relation, consistent with pink noise.  The slope of the regression

line is –0.59, which corresponds to a 1/ƒ0.59 scaling relation.  Note,

however, that the highest frequencies in Figure 6.1C seem to be

slightly “whitened,” which introduces a slight quadratic trend to the

power spectrum and a slight bias in the slope of the regression line

toward a shallower value.  This pattern could justify eliminating the

highest frequencies from the regression line by fitting only the lowest

25% of the frequencies, for instance.  As expected, excluding the

whitened higher frequencies yields a steeper spectral slope of –0.86.

As an additional check, it is important to recompute the spectral

analysis using both more and fewer frequencies, and see comparable

results.  Analyses that use fewer frequencies should better resolve the

linear nature of the scaling relation, and analyses using more

frequencies should suggest that the scaling relation reaches into the

lower frequencies, but it is critical to eliminate the detrending steps

when examining the coefficients for lowest frequencies.  The presented

analysis, using 127 frequencies, reflects a compromise between the

need for a satisfactory level of statistical certainty in the spectral

coefficients (by examining frequencies that correspond to scales no

larger than 1/4 the length of the series) and the need to establish the

scaling range across at least 2 decades of frequencies.

Assuming a lack of evidence for white noise, the main reason for

conducting a spectral analysis is to determine whether the value of the

slope of the log-log regression line lies very near or less than –1, which
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marks the boundary between a stationary fractional Gaussian noise and

a nonstationary fractional Brownian motion.  Dispersion analysis more

accurately characterizes the fractal structure of a trial series than

spectral analysis, but it can only be used on approximately or weakly

stationary data sets.  In this regard, idealized pink noise, with a spectral

slope of –1, marks the boundary between mathematically stationary

and nonstationary trial series.  Fractional Brownian motions are

nonstationary, and require other techniques, such as detrended

fluctuation analysis (Peng, Havlin, Stanley, & Goldberger, 1995), which

can be used on fractional Gaussian noise as well, or rescaled range

analysis (Cannon et al., 1997).  Those techniques are closely related to

dispersion methods, but they will not be covered in this chapter.

Response times often yield scaling exponents suggesting pink noise,

and indicate that dispersion analysis is appropriate to determine the

fractal dimension of the series.  Next, the spectral slopes that define

fractional Gaussian noise and fractional Brownian motions are

described in detail.

Variability Categories.  The magnitude of the power-law scaling

exponent circumscribes at least two general classes of temporal

variability that are called fractional Gaussian noise (fGn) and fractional

Brownian motion (fBm) (see Mandelbrot & Wallis, 1969a/2000; Eke et

al., 2000, 2002).  Collectively, they are often referred to as 1/ƒα noise.

The original theoretical development of these ideas used Gaussian-

shaped probability density functions, but the classifications generalize

to empirical data that have non-Gaussian density functions (Mandelbrot

& Wallis, 1969c/2000).
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Figure 6.3 illustrates how fGn and fBm can be described using

the spectral slope of the power-law scaling relation.  fGn exhibits log-

log spectral slopes that range between 1 and –1.  A slope of 0 indicates

no historical dependence—independent sources of random variation,

or white noise.  Slopes reliably greater than 0 and less than 1 indicate a

tendency for positive data values to be followed by negative values,

which is termed anti-persistence; this is sometimes called blue noise.

Slopes less than 0 and greater than –1 indicate persistence—positive

data values tend to be followed by positive data values.  This is the

domain of pink noise, the main topic of this chapter.  Assuming the log-

log regression is linear across 2 or more decades (log units) of

frequency, pink noise is simply a statistically reliable departure from

white noise in the direction of persistence, evaluated using a

combination of spectral and fractal analyses.

Spectral slopes less than –1 and greater than –3 describe a

related but fundamentally different kind of variability called fractional

Brownian motion. This is the domain of random walks.  A spectral slope

of –2 indicates idealized Brownian motion.  Slopes less than –1 but

greater than –2 indicate anti-persistent fractional Brownian motion, in

which successive increments tend to have opposite signs. Slopes

between –2 and –3 indicate persistent fractional Brownian motion, in

which successive increments tend to have the same sign (this is

sometimes called black noise).  Notably, a single parameter

characterizes this entire family of noises.

Idealized pink noise, or 1/ƒ1 noise, is special mainly because

when the x- and y-axes of a 1/ƒ1 noise are enlarged in like proportions;

the enlarged portion of  the series is statistically  indistinguishable from
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Figure 6.3. The figure adapted from Eke et al. (2000) portrays an idealization of spectral slopes
that distinguish fractional Gaussian noises (fGn) and fractional Brownian motions (fBm) (see also
Cannon et al., 1997). Idealized pink noise, or 1/ƒ1 noise, is special as a mathematical way-point;
it marks the boundary between stationary (fGn) and nonstationary (fBm) data series, two
categorically distinct kinds of variability (Eke et al., 2000, 2002).
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the original series.  Pink noise that has a scaling exponent that falls

between 0 and 1 requires the x- and y-axes to be enlarged in different

proportions to yield the same effect (Eke et al., 2000, 2002).  Idealized

pink noise is also important as a mathematical way-point, as it marks

the analytic boundary between stationary and nonstationary data

series.  Idealized pink noise, and data series with scaling spectral

slopes less than –1, have in theory, and in practice, infinite variance.

Pink noise with nontrivial spectral slopes less than –1 has infinite

variance in practice, in the sense that the interdependence of finite

statistical samples yields unreliable population parameters

(Bassingthwaighte et al., 1994; Mandelbrot & Wallis 1969b/2000).  Thus,

a spectral slope of –1 marks an important boundary between two

categorically distinct kinds of variability, fGn and fBm (Eke et al., 2000,

2002).

Many natural systems emit pink noise, but spectral slopes of

exactly –1 are not usually observed.  Heart rate variability can exhibit a

spectral slope very near –1 (e.g., Eke et. al., 2002), but many

established examples display slopes between 0 and –1.  A large

sample of yearly tree ring indices has average spectral slopes of –0.43.

Annual precipitation statistics have average slopes of –0.48. The classic

Nile River yearly minimum series yields a spectral slope of –0.82 while

measurements of the Nile’s yearly maximum levels display a slope of

about –0.68 (Mandelbrot & Wallis, 1969b/2002). Natural phenomena

entail sources of unsystematic external variability, in addition to

sources of intrinsic 1/ƒ scaling, which results naturally in pink noise

with spectral slopes greater than –1.
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Typically, response times from elementary cognitive tasks, such

as temporal estimation, yield scaling exponents that fall within the

range of 0-1, and thus contain a nested, statistically self-similar pattern

of positive correlation across successive observations.  Spectral slopes

that lie near –1 suggest that the nested structure of positive correlation

dominates the series.  Spectral slopes that lie closer to zero indicate a

less prominent, “whitened” structure of nested positive correlation

across the series.

Next, a statistical technique called dispersion analysis is

introduced.  It more accurately characterizes the pattern of statistical

self-similarity than spectral analysis.  It yields a fractal dimension

statistic (FD), which is closely related to the slope of the power

spectrum.  In fact, FD = 1 + (S + 1)/2, where S is the spectral slope, of

the log-log regression line.  This formula assumes the spectral slope of

the series falls between –1 and 0.  Note, however, that since the two

analyses “break up” the trial series in mathematically different ways

(e.g., Fourier analysis versus means and standard deviations) they will

not typically output exactly the same fractal dimension for the exact

same signal, although they should yield reasonably similar outcomes.

If there is a strong disagreement between the two methods, examine

the signal, and the steps in the analysis, carefully for potential artifacts.

Dispersion Analysis.  Dispersion analysis yields the fractal

dimension of a trial series and gauges the change in variability due to

changing sample sizes.  Dispersion analysis determines whether the

trial series variability converges fast enough, as sample size increases,

to yield stable statistical estimates of population parameters.  If not,

then the process that produced the variability is, in practical terms,
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scale free in the sense that it has no characteristic “quantity” or scale of

variability.

There are several ways to compute the fractal dimension, and

dispersion techniques are among the most accurate (Bassingthwaighte

et al., 1994; Caccia et al., 1997; Eke et al., 2000, 2002).  Spectral

analyses yield less reliable fractal dimension estimates than dispersion

methods.  A practical advantage of dispersion analysis is that familiar

statistical constructs, means and standard deviations, are used for the

analysis.  A version of the standard technique of relative dispersion

analysis is presented here.  It allows for the use of normalized data

instead of raw data—call this standardized dispersion analysis to avoid

confusion with other methods.  Note that the standardized dispersion

analysis yields dispersion measurements that are in units of the

standard error of the mean; the standard deviation of a sampling

distribution of means, comprised of means of (adjacent) samples of

specified sizes.  By contrast, the original method described by

Bassingthwaighte et al. is based on the relative dispersion statistic that

is comprised of a ratio of the standard deviation and the mean (i.e. RD =

SD/M).  The outcomes of the two techniques are identical.  However,

the spectral technique presented earlier assumes a normalized trial-

series and standardized dispersion analysis allows the same detrended

and normalized data set to be submitted to both analyses.

When computing the dispersion statistics in the subsequent

steps, compute the standard deviation using the population formula

(i.e. use N, the number of data points, in the calculation, rather than the

usual bias corrected N – 1).
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A dispersion analysis repeatedly resamples the trial series using

sampling units of different sizes to estimate the fractal dimension of a

trial-series.  In the steps that follow, variability is gauged using the

standard deviation of means of progressively larger adjacent samples.

That is, the analysis tracks how variability in sample means decrease as

progressively larger samples of adjacent data points are aggregated

together in a sample mean.  If the samples are statistically independent,

then it should not matter that adjacent samples are being grouped and

regrouped to form samples of different sizes.

To perform the analysis first construct a table, like Table 6.1.

Begin the table by recording a 1 in the points-per-bin column and

another 1 in the dispersion column.  The overall standard deviation (SD

= 1) of the normalized series represents the overall dispersion of the

series, given that the data points are treated individually.  Essentially,

the overall trial series standard deviation is treated as a population

parameter, and for this initial step, N is also 1.  The overall standard

deviation is identical to the variability of a sampling distribution of 1024

“means,” computed across single, individual observations, which is just

the raw score standard deviation.

The next step involves grouping the data points into adjacent

pairs, which makes it more obvious that variability in the means of

sample bins is being tracked.  Compute the mean for each successive

pair of points—each bin.  This yields the new set of data points; a

sampling distribution of means that contains the 512 values of each 2-

point mean.  Compute the standard deviation of this new distribution.

Enter a 2 in the points-per-bin column of the table, because 2 point

sample means were used.  Then enter the standard deviation of the
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sample means in the dispersion column.  If the trial series were

composed of statistically independent observations, then the expected

standard deviation of the sampling distribution of the 512 two-point

means would be 1/√2 or about 0.71.  Interested readers may consult

Van Orden et al. (2003) for an explanation of the relation between the

standardized dispersion statistic and the equation for the standard error

of the mean.

Table 6.1: Standardized dispersion as a fucntion of sample bin size in linear and
logrithmic units.

Bin Size Standardized

Dispersion

Log10

(Bin Size)

Log10 (Standardized

Dispersion)

1 1 0 0

2 0.88 0.30 –0.06

4 0.79 0.60 –0.10

8 0.73 0.90 –0.14

16 0.68 1.20 –0.17

32 0.60 1.51 –0.22

64 0.54 1.81 –0.27

128 0.47 2.11 –0.32

256 0.15 2.41 –0.82

512 0.02 2.71 -1.68

Repeat the previous step until only two data points are left (i.e.,

the third iteration will use 256 bins of every four successive data points,

the fourth iteration uses 128 bins of size eight, and so on, until there are

two bins of size 512).  At the culmination of each step, enter the number
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of points that comprises each bin, and the standard deviation of the

distribution of the sample means into the table.  In the final repetition,

the final two data points come from a bin containing the first half of the

original trial series and a bin containing the last half.  To summarize:

Each step in constructing the table generates an N that is equal to the

bin size and a standard deviation that estimates dispersion at that bin

size.  If the trial series was a series of statistically independent data

points, then the standard deviation should diminish very nearly as a

function of 1/√N, as the size of the sample bin sizes are progressively

increased.

Finally, plot the logarithm of the numbers in the points-per-bin

column against the logarithm of the numbers in the standard deviation

column as in Figure 6.2.  Base-10 logarithms were used here, but other

bases also work.  For instance, using base 2 represents the number of

samples in the bins as integer powers of 2—just be sure to use the same

base for taking the log of the dispersion values as well.  The relation

between the two variables should be linear on double-log scales,

except perhaps for the three or four points that correspond to the

largest bins.  Typically, the last few relative dispersion measurements

that correspond to the very largest bin sizes are excluded at this point

(Cannon et al., 1997); this is a critical adjustment when detrending is

used.  Here, the three largest bins were excluded because the

detrending procedures removed the variability at these scales.  Natural

fractals exhibit scaling relations across a finite range of scales, so the

linear relation is expected to break down at some point, for either (or

both) the smallest or largest bin sizes.  (Points excluded in the log-log

regression in Figure 6.2 appear as open circles.)  If using a
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standardized series the dispersion values at the largest bin size

approach zero (and negative infinity when the log transformation is

performed).  As such, they bias the slope of the regression line (see

Caccia et al., 1997, for additional refinements of this technique,

especially for shorter data sets).

A linear relation with a negative slope in log-log coordinates

establishes an inverse power-law scaling relation and indicates that the

trial series is a simple fractal (Bassingwaighte et al., 1994).  The fractal

dimension of the series is given by subtracting the slope of the least-

squares regression line from one, the Euclidean dimension of the

series.  The relation illustrated in Figure 6.4 is an inverse power-law

scaling relation.  The slope of the log-log regression line is –0.14, and

the fractal dimension of this trial series is therefore 1.14.  Transforming

the spectral slope of –0.59 into a fractal dimension yields 1.21; although

those values are not identical, they are in the same neighborhood.  Also

recall that the spectral plot revealed evidence that the high-frequencies

were “whitened,” which tends to bias the spectral slope towards

shallower slopes, and thus, larger fractal dimensions.  For instance,

returning to the spectral coefficients and fitting only the lowest 25% of

the power spectrum coefficients yields a spectral slope of –0.86, which

translates to a FD of 1.07.

At this point, a reader might ask him or herself, which

characterization is the correct one?  It is important to be mindful of the

fact that each method of analysis has strengths and susceptibilities.  For

example, the spectral methods are sensitive to a host of artifacts that

affect the high-end of the frequency range, but dispersion analysis is

not as  susceptible to these  influences  since it is not based on a Fourier
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Figure 6.4.  Standardized dispersion is depicted as a function of sample-bin size, on double
logarithmic scales.  The x-axis indexes the base-10 logarithm of the number of adjacent data
points in each adjacent sample bin.  The y-axis indicates the base-10 logarithm of the standard
deviation of the mean standardized dispersion measures, across all the sample bins.  The solid
line is a least-squares regression line for the first 7 data points, represented by the solid points.
The three points depicted as open circles correspond to the three largest bins and were not
included in the regression analysis because the detrending procedures tends to eliminate
variability at those larger scales.  The open circle corresponding to the 2 largest 512 point bins
is not shown because it fell below the limit of the y-axis.

transform.  Moreover, the earlier discussion of spectral analysis

illustrates that the raw data is subjected to a series of transformations to

yield a spectral slope.  Dispersion analysis, on the other hand, can be

unduly influenced by simple linear trends that span the full length of

the series.  Dispersion analysis has been shown to lose some of its

accuracy in characterizing time series that display very strong
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interdependence, such as pink noise with a spectral slope near –1, (Eke

et al., 2000, 2002), which are essentially nonstationary signals in the

case of limited sample sizes.  Dispersion analysis should not be used on

fBm series, which are truly nonstationary signals.

Most importantly, both methods should yield solid, converging

evidence of the presence of a power-law scaling relation.  All other

things being equal, the fractal dimension based on the dispersion

method is more accurate, but it would not be unreasonable to report an

average across these two, or perhaps additional methods in research

reports.  Notice the complementary nature of the two analyses; spectral

methods are reliable at the intermediate and larger scales (the

intermediate and lower frequencies), while dispersion methods are

reliable at the intermediate and smaller scales (medium and higher

frequencies).

The take-home point is that both spectral and dispersion

methods decompose the raw data in different ways, and thus interact

with the idiosyncrasies of a given empirical signal in slightly different

ways.  In addition, both analyses require the researcher to make a

number of choices about a range of parameters, such as the manner of

detrending, the number of spectral coefficients or bin sizes to fit with a

regression line, and so on.  Each choice will impact the outcome of the

analysis in some way, at least compared to other choices that could

have been made.  As such, both methods should agree qualitatively,

and yield similar, but not necessarily identical, fractal dimension

estimates.  Redoing the analysis using other parameter choices may

change the value of the fractal dimension statistics somewhat, but it will

typically do so in a systematic manner (e.g., fitting the whole spectrum
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often yields shallower spectral slopes).  As long as the fractal

description survives trivial changes in the parameters that are used to

govern the analysis (e.g., dropping the 3 or 4 largest bins in the

dispersion analysis or fitting the entire spectrum versus the lowest

25%-30% of the spectrum), it is likely accurate.  It is then up to the

researcher to present a succinct, conservative analyses that, in his or

her best judgment, accurately portrays the data at hand.

Significance Testing.  There are two general kinds of statistical

tests that one may want to conduct on the fractal dimension or spectral

slopes resulting from the analyses discussed earlier.  The first situation

involves experimental research designs that entail contrasts between

two or more conditions, and standard linear statistical methods such as

a t-test or ANOVA (or nonparametric equivalents) can be used to

establish differences in fractal dimension across groups.  However,

such comparisons must be carefully considered.  Simple issues of

measurement affect the fractal dimension and spectral slope of trial

series arising from different tasks (e.g., Van Orden et al., 2003), so the

fact of a statistically significant difference across tasks may not point to

a theoretically interesting difference.

The second, and perhaps more novel, approach is to determine

whether white noise or pink noise better describes an observed trial

series.  There are a number of ways that one or several trial series can

be statistically distinguished from white noise.  If a reasonably sized

distribution of slope or fractal dimension estimates is available from

several subjects, a single sample t-test could be used to determine if

the sample mean of the spectral slopes is significantly different from 0,

the expected slope of white noise (or if the fractal dimension differs
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from 1.5).  If only a single trial series is available, then one can easily

test for a significant departure from a pattern of white noise by

contrasting the observed data with surrogate data sets (e.g., the

reshuffled data in Figure 6.1D.).  Simply randomly reshuffle the order of

the original trial-series, 10 or 20 times, each time computing the fractal

dimension and/or spectral slope of each reshuffled version of the trial-

series.  Then calculate the fractal dimension mean and SD of the

surrogate data sets and compare the mean to the observed values of

the original series.  If the fractal dimension and spectral slope of

original series is in the pink noise range, and more than 3 SD away from

the mean of the surrogates, then a null hypothesis of white noise can be

rejected (Hausdorff, 1996; see Theiler et al., 1992, and Efron &

Tibshirani, 1993, for more details and options).

DISCUSSION

At first glance, Gilden et al.’s (1995) original temporal estimation

task appears to be directed at understanding a person’s ability to

replicate a range of fixed time intervals.  Thus, one might expect it to

include an extensive discussion of how well or poorly people

performed, but accuracy was barely mentioned in their report.  The

focus was instead on the structure of intrinsic patterns of trial-by-trial

variability.

Conventional research methods in psychology emphasize a

“cause-effect” metaphor as the only sensible route to scientific

understanding.  Experimental manipulations are introduced as a way of

brining empirical phenomena under experimental control.  Thus,
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factorial manipulations are designed to control empirical “effects.”

Perhaps one experiment is designed to amplify an experimental effect,

and another design may diminish the same effect.  All hope of a

plausible scientific explanation hinges on reducing experimental

manipulations to causal factors inside the mind or brain (Van Orden,

Holden, Podgornik, & Aitchison, 1999).  As such, one impulse that

cognitive psychologists sometimes have, especially those with solid

training in conventional statistics, is to think of pink noise in terms of a

statistical nuisance.  If pink noise causes problems for inferential

statistics (and, therefore, for the aforementioned causal logic), then

perhaps pink noise can be removed, modeled, or otherwise controlled.

This is a natural move for one taking a purely statistical perspective on

data.  However, finding pink noise can lead to fundamentally different

scientific perspectives on the data.  For example, one may wonder how

the human mind and body might be organized to give rise to statistical

interdependence, and to interact across different time scales.  From a

scientific perspective it seems to make sense to ask what the empirical

fact of pink noise in cognitive and other human performance implies

about the fundamental coupling of bodily processes.

For cognitive science, Gilden’s approach was revolutionary

because it supplied the seed of an alternative format for scientific

explanations of cognitive performance, and for psychology in general.

That alternative began with attempts to establish the presence of pink

noise despite a range experimental manipulations (e.g., Gilden et al.,

1995), and it was subsequently expanded to include experiments in

which pink noise survived changes in cognitive tasks (e.g., Cayton &

Frey, 1997; Gilden, 1997, 2001; Van Orden & Holden, 2002; Van Orden
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et al., 2003).  Thus, the alternative approach was directed at the

identification of ubiquitous performance phenomena, in the hope that

those phenomena may illustrate something very general about human

performance.  Gilden was perhaps one of the first to suggest, on the

basis of an empirical finding, that pink noise implied that complex

systems theory may be relevant to cognitive psychology (Gilden et al.,

1995).  The link is implied, in part, because pink noise is an important

(but not sufficient) footprint of self-organization and self-organizing

systems in nature (see also Aks, Chapter 7, and Van Orden et al., 2003).

More generally, the widespread finding of pink noise in trial series

from exhaustively studied, standard cognitive tasks underscores the

potential for analyses of patterns of variability in cognitive performance

to be informative.
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