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Consider the “search and select” problem we face each day.

We constantly set goals for ourselves that require us to scan our

environment until we find a target. Whether we are looking for a face in

a crowd, our keys in a cluttered environment, or a tumor in an x-ray,

we rely on this ability to search the environment.  What type of

process is involved?  Most researchers argue that some form of

memory serves as a guide to search.  Attention also plays an important

role (e.g., Kowler, Anderson, Dosher, & Blaser, 1995; McPeek,

Maljkovic, & Nakayama, 1999), and is arguably what drives saccadic

eye movements to be effective.  For now, I will focus on the role of

memory in guiding search. A popular view is that a record accumulates

(e.g., Townsend, 1974) and persists across fixations to guide search

(e.g., Irwin, 1992).  Once items are visited they are tagged so as to

inhibit unnecessary subsequent visits—a phenomenon known as

inhibition-of-return (e.g., Posner & Cohen, 1984; Klein, 1988).  Surely,

search would be more efficient if we only needed to check each item

once until the target was found.  While this theory has empirical

support (see Shore & Klein, 2000, for a review), views of what

characterize this memory are widely varied, as are the experiments

that attempt to test them (Irwin, 1992; Posner & Cohen, 1984; Klein,

1988; Treisman & Gelade, 1980; Wolfe, 1994). Moreover, and

perhaps surprisingly, studies have shown that under some natural

search conditions memory does not seem to play much of a role in

guiding search (e.g., Ballard, Hayhoe, & Petz, 1995; Horowitz & Wolfe,

1998).  Eye movements are often sloppy when scanning a natural

environment with our eyes returning repeatedly to objects and

locations that have already been visited (Ballard et al., 1995).  Instead



Aks

321

of systematically retrieving information from memory, search may rely

on the external world to serve as its guide (O’Regan, 1992).

RECONSIDERING HOW WE STUDY VISUAL SEARCH

To help reconcile why such widely varying search behavior has

been seen in those different experiments, let us consider the different

methodological approaches that have been taken.  Typically, the

analytical focus is on comparing performance speed, accuracy, or

amount of information recalled across conditions (e.g., experimental

and control).  In studies of inhibition-of-return, for example,

researchers are interested in the effect of prior exposure on

subsequent search performance.  Once the eyes fixate and “take

note” of a particular item, there should be no need to revisit this item.

Similarly, in priming experiments, the critical comparison is between

“new” vs. “repeated” information. Positive priming experiments show

benefits accrued from repeated exposure to target and distractor

information, and negative priming produces interfering effects on

search performance (e.g., Maljkovic & Nakayama, 1994).

In these traditional experiments, RTs and error rates are

combined across trials of the same conditions.  The variability of the

behavior, which inevitably emerges in all conditions, is attributed to

extraneous noise. That variability is isolated and removed from the

purported impact of the independent variable. By contrast, similar to

Gilden (1996) and Gilden, Thornton, and Mallon (1995), we focus on

the variability over time. As is commonly done in the dynamical

systems approach in psychology, we start by asking how a behavior

changes over time (within a single condition).  We no longer assume
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erratic fluctuations are noise in the system (Gilden, 1996).  Rather,

these fluctuations may contain important information about how search

history may have an important influence on future behavior. In this

chapter I assess whether a dynamic is driving visual search by

analyzing the temporal properties of eye movements. This approach

may help us understand whether a simple iterative process is behind

visual search.

PATTERNS OF SEARCH

Studying the pattern of search behavior is key to understanding

what drives search, and it will help us understand essential

characteristics of any mediating memory mechanism. An absence of

memory will be signaled by random search. The opposing extreme of

random search would be a highly systematic pattern of search, for

example, looking sequentially from left to right and top to bottom.

Such a systematic search guarantees coverage of the visual field until

the target is located. Although this increases the likelihood of

detecting a (fixed) target, there are costs involved. Perhaps most

important is the substantial cost in time. A speedy search is imperative

under many real world conditions, such as when the target is not fixed,

its identity or context changes, when the perceiver is constrained by

competing goals, or when an aggressive predator is pursuing the

perceiver. Such time constraints need to be incorporated into any

realistic model of human visual search.

Could a rapidly implemented, unsystematic, even haphazard

search be better than a systematic one?  Literature that documents

examples of erratic yet effective search adds plausibility to this idea
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(e.g., Ellis & Stark, 1986; Engle, 1977; Inditsky & Bodmann, 1980;

Krendel & Wodinsky, 1960). Similarly, visual search has been found to

be “nearly random” (Scinto, Pillalamarri, & Karsh1986), outright

“random” (Groner & Groner, 1982; Horowitz & Wolfe, 1998), and a

“random walk” (i.e., brown noise; Scinto et al., 1986). Likewise,

studies focusing on the type of memory guiding search find little

relation to the recall of objects (e.g., Melcher & Kowler, 2001; Ballard

et al., 1995) or their locations in the scene (Zelinsky & Loschky, 1998).

Contrary to what we might expect, and to what much conventional

theorizing holds, visual search often is unsystematic and not

necessarily related to explicit memory for what and where our eyes

have just visited.

Computational theory as well as empirical findings (e.g., Megaw

& Richardson, 1979; Locher & Nodine, 1974) have begun to clarify

these notions and illustrate how a pseudo-random search can afford

better coverage and more efficient search than many systematic ones.

As we will see, a long-term memory across fixations—one that does not

necessarily contain explicit information about the identity or locations

of objects—may be instrumental in driving behavior. Although the

complicated search behavior appears inefficient, the efficiencies come

in the form of significant cognitive savings. For instance, cognitive load

may be reduced since complex long-memory search behavior may

require minimal resources for coding, retrieval, and recall. As

described later in discussion of the SOC model, the only cognitive load

required involves iteration of a very simple set of rules.  
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P ATTERNS OF S C A L I N G , COLORED N O I S E , & SE L F -

ORGANIZATION

When we look at the statistical properties of many systems’

behavior we often find dynamics with well-defined scaling properties

(e.g., Bak, Tang, & Wiesnfeld, 1988; Jensen, 1998).  Scaling behavior

(see Liebovitch & Shehadeh, Chapter 5, and Holden, Chapter 6) is a

sign of long-term influences on system behavior and may be the

product of a simple yet flexible process. The scaling behavior itself

implies that no single characteristic scale is best suited to describe the

behavior of the process.  There is not just one time scale that controls

the evolution of these systems; the means and variances change

depending on the size of the sampling resolution. If given unlimited

time, these “scale-free” distributions can stretch on indefinitely

without encountering a cut-off. This stretching property is key to

scaling and can be quantified by power laws. We can succinctly

express some quantity N as some power (an exponent, e) of another

quantity, s: N(s)= s–e. Therefore, by examining the exponent of the

power law we know how the distribution changes as a function of some

underlying variable, which in this case is time.

Importantly, systems characterized by power laws often

produce complex behavior that appears random. In a particular form of

power scaling, one that emerges frequently in complicated behavior,

slower (i.e., low-frequency) behavior dominates. The temporal

phenomenon scales as the inverse of the frequency (f), or as 1/f noise.

Bak et al. (1987) suggested that these systems, with a power spectral

exponent α = –1.0 (i.e., fα), consist of many interacting components,

are ubiquitous in nature (see Bak et al., 1987 for examples), and,
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under many conditions, are dynamical systems which organize

themselves into a state with a complex structure. Self-organization

(see, e.g., Kelso, 1995) implies that patterns develop without a need

for a controlling agent. The patterns emerge from a decentralized set

of interactions that are intrinsic to the system.

Recognizing that difficult visual search tasks are often

unsystematic, yet effective, has led to my belief that the oculomotor

system uses subtle, self-organizing properties that produce erratic

fluctuations in search behavior. Because the process involves very

simple, iterated rules, only a minimal cognitive load is needed to carry

out the complicated search behavior. The amount of information

needed to be stored is reduced to a simple iterative function. This

highly compact code may suffice to guide search. Evidence for such a

self-organizing, complex system would reflect determinism inherent to

the system and support the notion that a simple memory persists

across fixations. It is a memory quite different from that of conventional

thinking—the use of “memory” here does not imply “memory” in the

everyday sense—and one that shares known properties of

neurophysiology (e.g., spreading activation and inhibition).

SELF-ORGANIZED CRITICALITY AS A M ODEL OF VISUAL

SEARCH

One candidate model of visual search is Self-Organized

Criticality (SOC1; Bak et al., 1987). In the SOC model, dramatic change,

                                    
1 Despite the controversy regarding Bak’s original conception of SOC as a reliable model of
1/f dynamics, slight variants have proven to be reliable (Jensen, 1998).  Alternative models
maintain many similar properties including simple rules producing complex behaviors and
self-organization.  Thus, SOC or similar alternatives could account for described data trends.
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or criticality, arises from the local interactions of the system’s

component parts. Such changes give rise to both the complex

behavior as well as the self-organization within the system. The

simplicity of the local rules according to which neighbors interact

implies the cognitive load for driving eye-movements is minimal. In

previous work, we have illustrated how SOC can easily be generalized

to a neural network capable of evoking perceptual changes (Aks &

Sprott, 2003).  Here I describe how local interactions can occur

through lateral inhibition and excitation across neurons.  Together with

simple threshold rules (as are typical in SOC models), these

interactions can produce perceptual changes (i.e., Stassinopoulos &

Bak, 1995). Similarly (as illustrated later in Figure 7.12 and the

Discussion), we can conceive of eye movements being driven by the

interaction of neurons across an underlying network of neurons.

Applications of dynamical approaches to other cognitive and

perceptual phenomena (Gilden et al., 1995; Kelso, 1995; Port & Van

Gelder, 1995; Pressing, 1999; Ward, 2002) show great promise for

extending that approach to the visual search system.  My proposal that

a simple deterministic process may drive the human visual system has

been tested in a challenging visual search task (Aks, Zelinsky, &

Sprott, 2002).  As described in the Method section in this chapter, our

analysis focused on the impact of time on the resulting probability

distributions and power spectra.  We looked for scale-invariance in

eye movements by evaluating whether the means and variances of

those data distributions changed over time, and whether power laws

emerged in the power spectra.  Finding a scale-invariant perceptual

system, characterized by a power law, would suggest that there is
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determinism and compact coding of information in visual search (c.f.

Voss, 1992).  Furthermore, evidence of SOC or a similar such iterative

mechanism in the perceptual system (as indicated by 1/f power laws)

would present another illustration of a complex system with a simple

underlying dynamic—one that can potentially account for the flexibility

of our visual system in adapting to novel environments.

METHOD

The visual search task, illustrated in Figure 7.1, consisted of

eighty-one 0.43° T shapes.  Targets and distractors differed in

orientation by 90°. Items were presented in a pseudo-random

arrangement so that all locations had an equal probability of being

searched. The participant’s task was to search the array and press a

hand-held button when the target was located.

A B

Figure 7.1.  (A) Sample display from the search task.  The subject searched for an upright ‘T.’
(B) The correct target is circled in red

The experiment consisted of 400 target-present trials and lasted

approximately 2.5 hours. Every effort was made to emulate a
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continuous search but factors such as fatigue and actual target

detection forced brief discontinuities in the data series. The two types

of discontinuities that occurred in this study were due to (1) inter-trial

intervals between when the participant found the target and a new trial

began, and (2) subdividing the trials into eight sessions separated by

five-minute rest periods. Eye movements were sampled using a

Generation V dual purkinje-image (DPI) tracker that was controlled by

a computer.

The duration and x and y positions of the eyes were recorded at

each fixation.  Each measure was treated as a set of data points whose

spatial and temporal properties were analyzed over the course of

search.  Additional parameters of the eye movements were used to

map the trajectory of the eyes as they moved from fixation to fixation.

These included differentiation of consecutive eye positions (e.g., xn –

xn+1), eye movement distance (x2 + y2)1/2, and eye movement direction

[arctan (y/x)].

ANALYSIS STRATEGY

Many of the tools of complexity theory involve formalizing (with

mathematical and visual representations) the interactions that occur

within a network. A typical aim is to look for a statistical pattern that

might emerge in data that have been collected over time. In our

analysis of the eye fixations we looked for scaling and other patterns

across data points in the series.  Here I will focus on three sets of

analyses—spectral analysis (FFT), power laws, and the Iterated

Functions System (IFS) clumpiness test.
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Spectral and Fourier analyses2 are well-established methods to

test for correlations within a time series. Jagged data series (appearing

superficially as a random series) are often produced by natural

complex systems. The data series can be described as a complex

waveform best estimated by the composite of simple regular (sine)

waves that span a range of frequencies. A Fourier transform involves

first decomposing the observed series into simple waves and then

plotting the power against frequency to describe what combination of

waves best describes the observed waveform. The analysis in our

study used a Fast Fourier transform (FFT; Press, Flannery, Teukolsky,

& Vetterling, 1986) and the resulting plot of the power (mean square

amplitude) against frequency. For an introduction to Fourier analyses

see one of many tutorials, such as Peak and Frame (1994) and Sprott

(2003).

Power Laws in Spectral Analyses

Can the eye movement data be described by a power law, and

do the data possess scale invariance associated with a self-organizing

complex system?  A linear function on a double-log plot produced by

FFT indicates the presence of a power law.  The regression slope of

this function, denoted by α , is the power exponent. When the

exponent  of  the  power spectrum is α  =  –1.0  (as shown in the middle

                                    
2 Spectral analysis is a linear method that can be effectively used to characterize a nonlinear
(fractal scaling) process. A linear method can be very useful in detecting correlated structure
in noisy data regardless of the process that produced it. For example, the eye movement data
that we have analyzed can be the output of either a linear or nonlinear process. I argue that the
1/f structure—estimated by FFT spectral analysis—may suggest that a SOC-type process
drives eye-movements.  SOC is a simple nonlinear process (iterated many times over) which
can operate in a neural network—perhaps to produce complicated eye movements. The linear
Fourier analysis is an effective tool to uncover (and estimate) correlated structure regardless
of whether it has emerged from a linear or nonlinear process.
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Figure 7.2.  Spectral analysis of three types of colored noise. White (1/f0) noise with a flat
spectrum indicates no correlation across data points; Brown (1/f2) noise has a steep slope
indicating short-term correlation; and Pink (1/f) noise has a shallow slope indicating
extremely long time correlation. The white noise is a Gaussian distribution of scores with all
frequencies equally represented. Sprott and Rowland (1995) included this sample data set in
their Chaos Data Analyzer software.  Brown noise is a simple integration of the white noise.  To
generate the pink noise I took the Fourier transform of the white noise data to isolate the
frequency domain, multiplied the amplitude of the frequency components by 1/f, and
performed an inverse Fourier transform.  See also Equations 9.35 and 9.36 in Sprott (2003).
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panel of Figure 7.2), the given temporal phenomenon scales as the

inverse of the frequency (f), or as 1/f noise.  In this particular form of

scaling, fluctuations occur in the same proportion at all scales (i.e., they

are self-similar and scale invariant), and there exists a great deal of fine

structure in the data.

An important aspect of spectral analysis is that it serves as a

useful measure of the strength of memory across the system.

Revealing temporal correlation is important not only in assessing

whether memory exists across eye-movements, but the magnitude of

the exponent also quantifies memory strength.  The steepness of the

slope (on a log-log scale) reflects the duration of memory (i.e.,

correlation across points). As shown in Figure 7.2, Brown (1/f2) noise

has a steep slope, indicating short-term correlation.  Pink (1/f1) noise

has a shallow slope, indicating extremely long time correlation, and

white (1/f0) noise, with its flat spectrum, indicates no correlation across

data points. Implications for these trends are described in the

Discussion section, including how pink noise hints at a process that has

important self-organizing properties.

Iterated Function Systems ( IFS)  provides an interesting

alternative to determine whether temporal correlations exist across

fixations (Peak & Frame, 1994; Jeffrey, 1992; Sprott & Rowlands, 1995;

Mata-Toledo & Willis, 1997).  This technique is used to create a pattern

that helps to visually characterize the color of noise. It does so by

producing clumped patterns for colored noise while producing

homogeneously filled spaces when the data are uncorrelated. At a

minimum we learn whether our data deviates from a random pattern,

but there is also the potential for learning about the degree of
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correlation present in noisy data. The different degrees of temporal

correlation correspond to the different forms of coloring to the noise.

As can be seen in Figure 7.3, white (1/f0), pink (1/f1, or 1/f), and

brown (1/f2) noise are easily distinguishable.  White noise produces a

pattern that uniformly fills its representation space. At the other

extreme, brown (1/f2) noise produces a pattern in which the dots

accumulate over the diagonals and some of the sides of the square,

leaving most of the representation space empty. Pink (1/f) noise

produces self-similar repeating triangular structures of different sizes,

and accumulates, albeit in a dispersed way, near the diagonals. These

examples illustrate how to visualize the fine structure of time series

using the IFS test to help distinguish the color of noise in a system.

The IFS Procedure

First, take either the x or y fixation series (or some derivative as

shown in Figure 7.4), and sort the data from the minimum to the

maximum value.  Then, subdivide the series into four quartiles, in such

a way that each group contains the same number of points.  The

original unsorted data set is then normalized and grouped into one of

four values, 1 to 4, representing the quartile to which the data belong.  

As shown in Figure 7.5, the representation space is a square that

provides a 2-D picture of the correlation structure present in the

trajectory of eye movements.  The four corners are labeled 1 to 4 in a

clockwise direction (starting in the lower left corner) to represent the

quartile of that fixation. The first fifteen fixations from Figure 7.4 are

used here to demonstrate the IFS procedure.
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Figure 7.3.  Output of the IFS test performed on white, pink, and  brown noise (the same
simulated data used in the analysis of Figure 7.2).  Each case is easily distinguishable.  White
noise uniformly fills the representation space.  Brown noise produces a pattern in which the
dots accumulate over the diagonals and some of the sides of the square, leaving most of the
representation space empty.  1/f (pink) noise produces self-similar, repeating, triangular
structures of different sizes, and accumulates, albeit in a dispersed way, near the diagonals.

Because previous points determine the position of each

subsequent point, the plot represents a trajectory of the eye

movements.  Each point gives a short-term history of eye movements,

since  the  influence  of  previous  fixations  diminishes  over  time.   The
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Figure 7.4.  The first 15 data points for the difference across the y coordinate of each fixation.
In the right column is the quartile to which each data point belongs.

result is a scattering of points in the plane as shown in Figure 7.3.  Any

departure from a uniform distribution of points is evidence for

correlated structure and possibly a deterministic mechanism driving

the behavior.  Clustering along the diagonals in the figure reveals the

short-term, highly correlated pattern associated with brown noise.  The

additional fractal microstructure reflects longer-term, but weaker,

correlations often associated with pink noise.

RESULTS

Visual search produced, on average, 24 fixations (SD = 15) per

trial, with each trial lasting 7.6 s (SD = 6.9 s).  Mean fixation duration

was 212 ms (SD = 89 ms) with 10,215 fixations across the complete

search experiment.  The number of fixations decreased from 1888 to

657  across  eight  sessions,  with the average  duration increasing from
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Figure 7.5.  (A; top-left) A point is plotted halfway between the center of the IFS square and the
quartile of the first point of the series.  The first point falls into the 2nd quartile of the full data
series.  The quartile of the data point is circled in red. (B; top-middle) A second point (falling
into the 1st quartile of the full data series) is plotted halfway between the first plotted point and
the second point in the fixation series. (C; top-right) A third point (falling into the 2nd quartile) is
plotted halfway between the second plotted point and the third point in the series, and so forth.
(D)-(O) (smaller panels, from top-left to bottom-right) show the remaining evolution of the IFS
map when applied to the first fifteen trials.
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206 to 217 ms. Mean deviation from last trial fixation to new target

location was 0.4°. indicating a high degree of accuracy in actual target

detection.  

Figure 7.6 shows a representative sample of the first

differences across eye position (yn-1 – yn).  These erratic trends were

similar for x- and y-coordinate positions, except for the overall

direction in which the eye position changed over time.  While

differences across y positions gradually increased over time,

differences across x positions tended to decrease over time. The

same trends occurred with relative dispersions (SD/M), a measure

which reflects system contingencies as function of sampling resolution

(Liebovitch, 1998).  These changes in mean and variance with fixation

duration are characteristic of fractal structures and scale-invariant

systems.

Figure 7.6.  Representative fixation series for the first differences of eye position (yn+1 – yn).
Only fixations along the vertical coordinate are shown.  The erratic pattern in the fixation
series is similar for horizontal eye positions.  The spikes are typical of 1/f behavior.
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The first method to assess temporal correlations (i.e., memory)

in search involved FFT and power spectral analysis.  The mean

regression slope of the power spectra for the x and y eye-position

coordinates was α = –1.7 (i.e., brown noise).  Differentiated (x and y)

data showed reduced regression slopes, α = –0.23.  The spurious low-

frequency regions of the spectra flattened the slope.  In the high-

frequency region of the curve α  = –0.7 (for y, α  = –0.7; for x, α  =

–0.6).  An example of the 1/f trends is illustrated in Figure 7.7.

Figure 7.7.  Power spectra of first differences of x and y fixation series produced pink (1/f)
noise. Spectra of differences across y fixations are shown here. Mean regression slope of the y-
difference power spectrum is α  = –0.7 in the high frequency region. Also shown is a line
depicting an exact 1/f power spectrum.
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The second method, the IFS clumpiness test (Jeffrey, 1992),

evaluates memory in complex search (i.e., temporal correlations and

deviations from randomness). Clustering along the diagonals reveals

short-term, highly correlated consecutive data points typically found in

brown noise. Such a pattern was observed in the analysis of raw eye

fixations for the x and y coordinates.  Additional fractal microstructure

appeared in the IFS test when fixation differences were analyzed. This

trend, shown in Figure 7.8, reflects long-term, but weaker, correlations

often associated with pink noise.

Figure 7.8.  Results of the IFS clumpiness test of differentiated vertical (y) fixations.  A similar
pattern emerged for horizontal (x) fixations.  The diffuse fractal microstructure reflects longer-
term correlations appearing weaker than those in the raw data.  Both cases resemble patterns
associated with pink noise.



Aks

339

A combined measure of distance across eye fixations (Δx2 +

Δy2)1/2 produced power spectra with 1/f trends dominating the lower

frequency range and 1/f2 trends dominating the high frequency range

(Mean α = –0.47; see Figure 7.9). The corresponding IFS test, shown

in Figure 7.10, produced a clear but distinct colored noise pattern with

more diffuse clustering of data points than those found in the raw and

differentiated data sets.  Random shuffling of x, y, and distance data

sets produced white noise. Thus, differences in these fixations

possessed a potentially important, long-term dynamic characterized

by ~1/f pink noise.

Figure 7.9.  Power spectra of distance across eye fixations (Δx2 + Δy2)1/2.  Pink (1/f) trends
were dominant in the lower frequency range, and 1/f2 trends were dominant in the high
frequency range (mean α = –0.47). Also shown is a line depicting an exact 1/f power spectrum.
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Figure 7.10.  Results of the IFS clumpiness test on the time series of distances between fixations
(Δx2 + Δy2)1/2.  A unique colored noise pattern emerged with more diffuse clustering of data
points than those found in the raw and differentiated data sets.

DISCUSSION

I examined complicated eye movements to gain insight into the

underlying mechanism guiding visual search.  Using a challenging

conjunction search task, we generated and then analyzed the resulting

eye movements (Aks et al., 2002). My focus on the dynamic of the

fixation series offers a unique perspective to the broader study of eye

movement behavior. It contributes new insights to the debate in the

visual-cognitive literature on whether memory plays a role in guiding

visual search (e.g., Horowitz & Wolfe, 1998; Kristjansson, 2000;

Melcher & Kowler, 2001; Ballard et al., 1995; Shore & Klein, 2003).  
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According to conventional theory and common sense, visual

search utilizes information from previous fixations to guide subsequent

search.  Memory models of visual search incorporate mechanisms such

as inhibitory tagging (Klein, 1988) or identification of previously

searched items (e.g., Irwin, 1992; Jonides, Irwin, & Yantis, 1981).

Horowitz and Wolfe (1998) is a recent example of research that

challenges the assumption that search is guided by memory from

previous fixations. Doubts about a memory-based guidance emerge

from their findings of RTs being unaffected by randomly repositioned

items, together with recent research showing that visual memory is

often surprisingly poor (Melcher & Kowler, 2001; Rensink, O’Regan, &

Clark, 1997; Simons & Levins, 1997) and that the visual system retains

little information about the locations (or identity) of objects over time.

Instead, the visual system seems to act on fleeting neural

representations that are overwritten by a change in the visual scene.

Horowitz and Wolfe’s (1998) claim that visual search does not keep

track of previously searched locations comes from their examination of

overall RTs to complete visual search.  However, relying on such a

coarse measure of behavior means that subtle contingencies in

scanning behavior can be overlooked.  Direct analyses of the eye

movements revealed a less obvious form of memory.

The key finding that a sequence of fixations can be represented

by a power law function confirmed our prediction that search might be

guided by a memory of previous fixations.  Contrary to Horowitz and

Wolfe (1998), we found that search behavior was not random and that

contingencies did in fact exist across fixations.  While much cognitive

theory implicates search mechanisms such as tagging and inhibition of



Visual Search and 1/f Dynamics

342

return (to previously visited items), the form of memory we have

found involves general contingencies across fixations. The 1/f power

law is a signature of these contingencies. The power law further

indicates that the system has scale-invariant properties typically

associated with a system optimized to adapt to a changing

environment. Since systems characterized by power functions are

known to be flexible, this suggests that the contingencies guiding

search may play an important role in selection of appropriate

information in an array of constantly changing environmental

information. The IFS clumpiness tests confirmed the results of the

power spectral analyses, showing that differences across fixations

revealed pink (1/f) noise.  These results suggest a long-term memory

is maintained across complicated search in a manner that may involve

the use of a simple set of rules with self-organizing properties (i.e.,

variants of Bak et al., 1988; Jensen, 1998).  

IMPLICATIONS OF 1/f NOISE

Simple neuronal interactions can produce complex, self-

organizing behavior.  To understand how simple rules can produce

complex eye movements let us consider Bak’s SOC model in the

context of a neural network.  Figure 7.11 depicts such a network that

could be used by the human visual system to represent a scene.

Activation of different neural sites on the network can serve both as a

means to represent the scene and a means to guide eye movements.

Figure 7.12 shows how the network is represented as a two-

dimensional grid of interacting cells.  Each cell possesses a certain

degree of activation represented by a numerical value, Z(x,y). Activity
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Figure 7.11.  Representation of a visual search scene mapped onto a neural network. The
scene is depicted in the top-right portion of the figure and shows one search display used in
the experiment. Shifting attention to a particular stimulus produces an increase in the
activation at the corresponding site on the neural net. Each node’s numbers and colors
represent the level of neural activation at that site. Nodes with the highest activation pull the
eyes to that location. The resulting path of the eye movements is shown as a shifting black line
superimposed on the network.

can be induced by any of a number of factors such as a salient visual

feature, shifting attention to a feature of interest, or random activity

that is produced even at rest.  Neural activity can also be triggered by

movement of the eyes to different locations.  As individual neurons are

activated beyond a threshold of, say, 4 arbitrary units, the activity in

the original site is dispersed to surrounding cells, incrementing the

activity in these regions by 1, {Z(x,y)  ➞  Z(x,y) + 1}, thus depleting

the activity  in  the  original  site  to  zero,  Z(x,y)  ➞  Z(x,y) – 4.    In  the
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A B

C D

E F

Figure 7.12.  (A) A neural network.  Numbers and colors indicate the relative activation of
neurons. High numbers and orange colors indicate a high level of activity. Low numbers and
blue colors indicate low levels of activity.  (B) A one-unit increment in neural activity at the
central site. This increase in neural activity can be due to any one of a number of factors,
including the appearance of a salient feature, shifting attention to a feature of interest, or
random activity that is produced at rest.  (C) Neural activity in the original central site is
depleted to zero after the threshold of 4 activation units is reached.  (D) Neural activity in the
immediately surrounding sites is increased by one unit.  (E)-(F) Neural activity in subsequent
surrounding sites is increased by one unit.
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absence of useful environmental information during visual search, the

eyes may be guided to sites that contain the highest level of activity

among immediately surrounding cells, and evade local sites depleted

of neuronal activity.  The global result can be a complicated search

pattern that could easily be mistaken for a random search (see Figure

7.13).

A B C

D E F

Figure 7.13.  Eye-movements being pulled to sites of greatest neural activity, following the
same progression of neural activity in Figure 7.12. When two sites have an equal level of
activity (a tie), as in (A), the eyes traverse an intermediate path. (B) and (F) show another
example of tied activity, but here the tie is on opposing sites.  Rather than remaining fixed, the
eyes are pulled to the site where the prevailing activity surrounding the recipient site is
greater.  Aside from these cases of equal activity, the general rule is that eyes are pulled to a
single adjacent site of greatest activity.
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The key finding of 1/f noise in eye movements has some

important implications.  First, we know that search is not random.

Instead the eyes are guided by their history.  A simple form of

temporal memory exists across the sequence of eye movements.  It is

possible that the 1/f search pattern is produced from guidance of eye

movements by changes in the intensity of neuronal activity across a

network of neurons.  These changes may be best described as the

output of iterating a simple set of threshold-based rules such as those

associated with SOC models.

The 1/f eye movements may also involve a cognitive mechanism

such as attention-based sampling and selection of useful information

from a complicated environment.  It is an open question whether

neuronal interactions and their spread of activation drives this

selection process.  Could this process produce the rapid and effective

search known to occur in humans?  The answer may relate to the

general finding that 1/f systems offer an optimal compromise between

efficient recovery of information and the tendency to err (Voss, 1992).

The significance of these complex yet adaptive behaviors remains

open to future scientific inquiry.
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