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The perception and production of speech unfolds in time.

Although this seems like an obvious and perhaps trivial statement, this

defining quality is not well captured by linguistic descriptions of

speech, most of which are fundamentally static.  Over the past few

decades, both the theoretical and mathematical foundations for

understanding organized behavior that emerges in time have been

more fully developed and have infiltrated the study of many different

human behaviors. In general, nonlinearity is a hallmark characteristic

of these behaviors. That is, small changes in context or constituents can

produce large behavioral effects and large changes in context or

constituents might, in other conditions, produce little or no behavioral

effect. The conditions that reveal the nonlinearities are often exactly

those conditions that are excluded from experiments since they are

more difficult to analyze and understand.

One nonlinear aspect of speech perception that has been the

subject of a large number of studies is the phenomenon known as

categorical perception. Within certain ranges of an acoustic parameter

it is extremely difficult to discriminate between different stimuli that are

labeled as the same speech segment. At the same time, stimuli with the

same-size acoustic difference but in a different part of the parameter

range are easily discriminated (e.g. Liberman, Cooper, Shankweiler, &

Studdert-Kennedy, 1967; Liberman, Harris, Hoffman, & Griffith, 1957).

As an example, consider the words “say” and ”stay”. When a short

silent gap is introduced between the “s” noise and the vowel in “say”

(e.g., from 0-20 ms), listeners continue to perceive the word “say.”

Similarly, listeners perceive the word “stay” when the silent gap after

the “s” in the original stimulus is as long as 60 ms to 80 ms. But when
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the gap ranges from 30-50 ms, the same absolute difference in gap

duration as in the previous two examples (i.e., 20 ms), listeners

perceive an abrupt shift in the stimulus from “say” to “stay” (Best,

Morongiello, & Robson, 1981).  Importantly, when listeners identify two

stimuli as belonging to the same phonetic category, they often have

great difficulty discriminating between them. As the “category

boundary” nears, stimuli are more easily discriminated from each

other. Obviously, stimuli that are identified as different words or

syllables are also easily discriminated. This means that there is acoustic

variability but phonetic/perceptual stability in some ranges of the

acoustic parameter (here gap duration) but perceptual change

accompanies the same degree of acoustic change for other values of

the acoustic parameter. In other words, the relationship between

acoustics and phonetic perception does not change in a linear fashion.

The perceptual boundaries between categories, or “critical

points,” are not hard-wired by neurophysiology, or set indelibly by

one’s native language, but adjust flexibly with factors such as phonetic

context, the acoustic information available, speaking rate, speaker, and

linguistic experience (see Repp & Liberman, 1987, for review).  This is

not simply a laboratory demonstration: Listeners recognize the same

word produced by different speakers (males, females, speakers of

different ages) and by the same speaker in markedly different

linguistic and intentional contexts, even when the listener has had no

prior experience with the other individual’s speech patterns. Thus,

perceptual stability coexists with perceptual flexibility.

About a decade ago, Pam Case, Mingzhou Ding, Scott Kelso and I

considered seriously the ideas that speech categorization is inherently
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nonlinear, and that the nonlinearity can serve as a window into the

dynamics of speech perception (i.e., the equations of motion that

characterize the intrinsic organization of speech perception). My

charge by the organizers of the NSF workshop “Nonlinear Methods in

Psychology” was to re-cap that work as an example of how these ideas

can help guide empirical studies to allow a deeper understanding of

the phenomenon under study. In exploring the process of speech

perception in a non-traditional way, two things are extremely

important. First, it is important not to ignore the decades of previous

research on how people perceive speech. Any alternative theoretical

views should be compatible with that body of work. Second, theory and

experiment are related in a mutually informative fashion. The

investigator’s theoretical viewpoint guides not only what she or he

chooses to examine, but also how it is examined. In turn, experimental

results guide theory development, which then suggests the next

empirical step. In the present case, since the focus is on evaluating

whether the identification of speech sounds is itself characterized by

what has been termed perceptual dynamics (characterized by

multistability, loss of stability, flexibility, etc.; cf. Kelso, 1994a, 1995),

the methodology chosen for the experiment must be one that allows for

the possibility to see those signature characteristics.  In what follows, I

give a brief description of the main features of nonlinear dynamical

systems relevant to this enterprise and describe how these features

offered strategic guidance for the specific experiments and the

theoretical model developed.

The first step was to conceive of perceptual space as a dynamical

system with context, experience, and learning (among other things) as
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processes that can modify this dynamical system. Briefly, a dynamical

system is one that evolves over time such that its present state always

depends in some rule-governed way on previous states. Differential

equations or maps (equations that dictate how a system evolves in

discrete time steps) of relevant variables offer a mathematical

description of the system's behavior as time passes and parameters

change. Typically, one observes the stable behaviors of a system,

referred to as its attractors.  The attractor layout, or set of possible

behaviors of a system, may change over time in such a way that

observed behaviors change gradually or abruptly. Abrupt, or

qualitative, changes (called phase transitions or bifurcations) may be

thought of as the spontaneous emergence of new forms of organization

(a self-organized pattern formation process) under specific boundary

constraints (e.g., Haken, 1977; Nicolis & Prigogine, 1977).  In a speech

perception experiment, qualitative change in categorization of the

stimuli allows a clear differentiation between patterns; there is no

ambiguity as to what are the stable patterns for a given listener. Note

that the qualitative change (here the shift in categorization) is

informationally meaningful (Kelso, 1994). Although in any experimental

situation there are many variables likely to be changing, the key is to

discover the ones that bring about this qualitative categorical change.

As Kelso (1995) has pointed out, situations where qualitative change

occurs are also regions of dynamic instability and dynamic instability is

the generic mechanism underlying self-organized pattern formation

(Haken, 1977; Nicolis & Prigogine, 1977). Without the dynamic

instability, no change in pattern would occur. In turn, if one can see

evidence of growing dynamic instability, then one can study the



Tuller

358

emergence of the new pattern. We will return to the idea of dynamic

instability when we describe the experiments evaluating speech

categorization as a dynamical phenomenon.

Although this description of qualitative pattern change as some

parameter varies bears a strong similarity to the results of speech

categorization tasks, the similarity may be only superficial. Empirical

work on speech categorization, in order to maintain the independence

of treatment levels required by most parametric statistical techniques,

typically presents the stimuli to listeners in random order. Such

experiments thus describe the location of a statistically defined

phoneme boundary  (most often, the point corresponding to the 50%

crossover of the response function for a two-category set; see Ganong

& Zatorre, 1980, for a comparison of different methods for defining

boundary location).  Unfortunately, this traditional methodology is far

from optimal for revealing the dynamical characteristics being

evaluated, because the randomization of stimuli destroys the footprints

of any underlying dynamical process that may govern the transition

between speech sounds. So one’s theoretical viewpoint must influence

experimentation from the initial design stage.

The strategy in our experiments was to use a stimulus continuum

for which categorical perception has often been demonstrated but to

vary the acoustic parameter sequentially, i.e., as a control parameter. A

control parameter is one that, when the appropriate range of values is

used, takes the subject from one perceived categorization to another.

For some behaviors, finding control parameters is non-trivial. However,

the literature on categorical perception gives us many plausible control

parameters for different speech categorizations. In what follows, I will
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review the observed dynamical effects and delineate some of the

factors responsible.  A model of the results was proposed and is

discussed, and unique predictions of the model tested. Lastly, I will

describe how viewing the speech perception process as a nonlinear

dynamical system forces, as a natural extension, a re-examination of the

process that occurs when learning to hear non-native phonemic

distinctions. Our experiments demonstrate the fruitfulness of the

approach and reveal that speech perception and perceptual learning in

speech are characterized by rich underlying dynamics.

In 1994, Tuller, Case, Ding, and Kelso examined speech

categorization when an acoustic parameter—the length of the silent gap

between a natural “s” and a synthetic “ay”—was varied in a stepwise

fashion. We used this particular stimulus continuum because it had

already been shown that listeners perceive “say” at short silent gaps

but they perceive “stay” at long silent gaps (e.g., Best et al., 1981).

Thus, the gap duration after the “s” was a possible control parameter

by which we could explore the mechanism of switching between

categorizations. However, a major difference between our experiment

and those of others was that we presented the stimuli in order. That is,

gap duration either increased systematically from 0-76 ms, then back to

0 ms, in 4-ms steps, or decreased from 76 ms to no gap, then back to 76

ms in 4 ms steps. There were 5 trials of each of these two sequences.

We also randomized the stimuli and presented 10 randomizations to the

listeners. The subject’s task was to indicate whether they perceived the

word “say” or the word “stay” by pressing appropriately labeled keys

on a computer keyboard. First, we determined that the randomized

stimuli resulted in the same perceptual identification function as
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reported previously in the literature. This ensured that our stimuli (and

listeners) were equivalent to those used by others.  Because the point at

which categorization shifts as a function of the direction of changes in

gap duration is considered a theoretically important juncture, the next

analysis focused on that point.

Logically, there are only three possible patterns of switching: (1)

A subject will switch between “say” and “stay” at the same gap

duration regardless of direction of gap change (a critical boundary); (2)

A subject’s percept will change at a larger gap duration as gap

increases than when gap decreases (an effect know as hysteresis or

assimilation); or (3) A subject’s percept will change at a larger gap

duration when gap decreases than when gap increases (a contrastive

effect). All three patterns were observed, with critical boundary being

much less frequent than hysteresis or contrast, which occurred equally

often. Thus, the perceptual changes in this speech identification task

show quite complicated dynamics when a relevant acoustic parameter

is sequentially varied. Closer analysis revealed that the incidence of

hysteresis and contrast was not simply random fluctuation around a

critical boundary, because their relative frequency changed in

predicted ways over the course of the experiment. These patterns of

change reveal that dynamic instability is playing a role in perceptual

switching, thereby linking phonemic categorization to self-organized

pattern formation.

How do you begin to connect experimental data to a generic

dynamical model? Quite simplistically, since we have two reproducibly

observed states—here the two categorizations “say” and “stay”—we

identify the categorizations with attractors, or stable states in
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perception. We use differential equations to define systems with

attractor properties that fit the observed experimental data.

Differential equations allow us to model quantities that change

continuously in time. We can find stable solutions of the differential

equations by finding equilibrium points, values of x for which the

derivative dx/dt=0 (see Equation 8.1; by definition, if the derivative of

some variable is zero, that means the variable is unchanging, which is

what it means for that value to correspond to a stable state).

Trajectories (solutions to the differential equation) may be "attracted" to

an equilibrium point or "repelled." We call the first case a stable

attractor (also called a sink) and we call the second case an unstable

attractor (also called a source or repeller).

If listeners perceived only a single perceptual category, a

theoretical model of a single attractor, a fixed-point, would be

adequate.  A situation in which two states, or categories, occur requires

that the model contain at least two stable attractors that change with the

control parameter. In our case, the model must be able to account for

the fact that at some gap durations a listener perceives only “say” and

for other gap durations the listener perceives only “stay.” The

presence of hysteresis and contrast is also informative, indicating that

more than one stable percept can coexist for a given acoustic

stimulus—either “say” or “stay” might be perceived. In this case the

stimulus is bistable—the two attractors must coexist for some range of

the control parameter.

These results were modeled concisely by the following

dynamical system (Tuller et al., 1994), written as a differential equation:
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dx/dt = –dV(x)/dx = –k + x – x3    [8.1]

Differential equations may be rewritten in the form of a potential

function (Equation 8.2), in which the attractors are geometrically

obvious when the potential is plotted. Here x  is a variable

characterizing the perceptual form and k is  a parameter specifying the

direction and degree of tilt for the potential. This allows visualization of

the behavior of the system as the parameter k is manipulated.

V(x) = kx – x2/2 + x4/4    [8.2]

Think of Equation 8.2 as describing the motion of a viscous point

mass (a “sticky” ball) moving in the potential landscape V(x) (such as

one of those shown in Figure 8.1). The minima of the potential, the

valleys in the landscape, are the attractors corresponding to the two

perceptual categories.

Figure 8.1. Potential landscape defined by Equation 8.2 for five values of k (adapted from Case
et al., 1995).

Figure 8.1 shows how the landscape changes for several values

of k. With k = minimum only one stable point exists corresponding to a
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single category (e.g., “say”). As k increases, the potential landscape

tilts but otherwise remains unchanged. However, when k reaches a

critical point k = –kc, a qualitative change in the attractor layout takes

place. In other words, a bifurcation occurs. The particular change at k =

–kc is a saddle-node bifurcation in which a “saddle” (the point repeller,

or maximum, at x = 0) and a “node” (the point attractor at x < 0) are

simultaneously created.  Thus, where there was once only a single

perceptual category there are now two possible categories. This

bistability, the co-existence of both categories, continues until k = kc

where the attractor corresponding to “say” ceases to exist via a reverse

saddle-node bifurcation (where the qualitative change is from two

available categories to one), leaving only the stable fixed point

corresponding to “stay.” Further  increases in k only serve to deepen

the potential minimum corresponding to “stay.” Thus, the model

captures the three observed states of the system: At the  smallest values

of the acoustic parameter only “say” is reported, for an  intermediate

range of parameter values either “say” or “stay” are reported, and for

the largest values of gap duration only “stay” is reported.

An accurate portrait of any real-world problem must take into

account the influence of random disturbances. In the present work, we

considered factors such as fatigue, attention, and boredom to

correspond to random disturbances because we could not measure the

changes in those factors over time. Further experimental work may

elaborate whether these factors are indeed random or predictable

modifiers of perceptual space.  Mathematically, spontaneous switches

among attractive states occur as a result of these fluctuations, modeled

as random noise. For a given point attractor, the degree of resistance to



Tuller

364

the influence of random noise is related to its stability, which, in

general, depends on the depth and width of the attractor (i.e., its basin

of attraction). As k is increased successively in Figure 8.1, the stability

of the attractor corresponding to the initial percept decreases (the

minimum becomes shallower and flatter), leading to an increase in the

likelihood of switching to the alternative percept. This implies that

perceptual switching is more likely with repeated presentations of a

stimulus near the transition point than with repetition of a stimulus far

away from the transition point, a prediction confirmed in Tuller et al.

(1994).

In order to account for the three response patterns observed

(critical boundary, hysteresis, and contrast), the behavior of k must

have multiple determinants.  One influential factor suggested by earlier

research is the number of repetitions perceived from each category.

Repetitive presentation of a speech stimulus has long been known to

shift the location of adjacent phoneme boundaries in a predictable

direction (see Darwin, 1976, and Eimas & Miller, 1978, for early

reviews). Taking this factor explicitly into account we proposed the

following equation describing the behavior of k as a function of the gap

duration:

k(λ)= k0 + λ + ε /2 + εθ (n–nc) (λ–λf),    [8.3]

where the value of k0 specifies the percept at the beginning of a run, λ

is linearly proportional to the gap duration, λf denotes the final value of

λ (i.e., at the other extreme from its initial value), and n is the number of

perceived stimulus repetitions in a run. The influence of the last term
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depends on a step function, θ(n–nc). Before a critical number of

accumulated repetitions nc is reached, θ(n–nc) = 0.  That is, in the first

half of each run, the tilt of the potential is only dependent on gap

duration and the initial configuration.  When n ≥ nc (during the second

half of each run) θ(n–nc) = 1. This means that each step change in gap

duration λ will produce a larger change in tilt k than it did in the first

half of the run. An additional parameter, ε, represents cognitive factors

such as learning, linguistic experience, and attention.  Note that the

importance of cognitive processes is well-established, for example,

attention and previous experience play a large role in synergetic

modeling of perception of ambiguous visual figures (Haken, 1990;

Ditzinger & Haken, 1989, 1990) and contribute to factors that determine

adaptation level in Helson's work (Helson, 1964).

Although the additional term was needed to incorporate contrast

effects into the same model that described hysteresis and a critical

boundary, it gave rise to unexpected predictions. For example, if the

subject is presented with a run with gap duration first systematically

increasing (from 0-76 ms) then systematically decreasing (from 76 ms

back to 0 ms), the percept is predicted to be more stable—the potential

would have a locally steeper slope—when the same stimulus appeared

as the last item in the run than as the first item in the run. This is

because the rate of change of tilt of the potential is faster in the second

half of the run for the same amount of acoustic change. This prediction

is unexpected given the literature on selective adaptation effects in

speech. In selective adaptation, a standard identification task is first

used to locate the “category boundary,” or point of subjective equality,

for the test continuum. Next, the subjects listen to the stimulus from one
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end of the continuum presented many times over. After a second

identification test with the original stimulus continuum, the position of

the perceived category boundary moves towards the repeated

stimulus. For example, in  a [ba]-[pa] continuum varying in the lag of

voicing onset after the initial consonant release burst, if the stimulus

with the longest voicing lag is repeatedly presented after the first

identification test, listeners then require a longer voicing lag for a

stimulus to be perceived as a [pa] (Eimas & Corbit, 1973)—in our

terms, perception of [pa] has destabilized. Somewhat

counterintuitively, our model predicts that when a word is perceived

many times over, its stability will increase.

This prediction was confirmed by experiment (Case, Tuller,

Ding, & Kelso, 1995). In that work, we used the same “say”-“stay”

stimulus continuum but asked listeners not only to categorize the

stimulus as either “say” or “stay” but also to rate how good an

exemplar of the category the stimulus was. The goodness rating was

used as an index of the stability of the percept (the local steepness of

the potential function). As predicted, regardless of whether the stimuli

were presented with gap duration between the “s” and the “ay” first

increasing from 0-76 ms and then decreasing back to 0 ms, or in the

opposite direction, the same physical stimulus presented at the end of a

sequence was judged a better exemplar of the category than was the

identical stimulus presented at the beginning of the sequence (Figure

8.2). One crucial difference between the work of Case et al. (1995) and

the earlier work on selective adaptation concerns the repeated

stimulus. In the former, the stimuli were changing systematically, albeit

at a subcategory level; in the latter, the identical stimulus (typically an
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Figure 8.2. Mean differences in judged goodness versus position in sequence as a function of
sequential vs. random stimulus order. When stimuli are presented sequentially (solid symbols),
the last stimulus presented is judged as a better exemplar than the same stimulus when
presented first in the sequence. This occurs for both 0 ms (square) and 76 ms (circle) gap
stimuli and does not occur with random stimulus orders intervening (open symbols) or when
the same stimuli are the “turnaround” stimuli in the middle of the trial (adapted from Case et
al., 1995).

end-point stimulus) was repeated. In fact, when Case and colleagues

presented stimuli with an intervening set of stimuli with randomly

changing gap durations, no differences in judged goodness were

observed. This result confirmed one prediction of speech

categorization as a context-sensitive, pattern-forming system.

Another difference between this empirical confirmation of the

model’s predictions and the literature on selective adaptation

motivated additional research. The model implies that the temporal

evolution of the alternative forms, and hence switching between them,
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depends on how the stimuli move through perceptual space. This was

supported by Case et al. (1995), described above, at least for the

judged goodness of the stimuli as members of the identified category.

Thus, systematic change in an acoustic control parameter, and not

solely the number of stimulus repetitions, is crucial. This was tested

directly by presenting subjects with a single “say”-“stay” trial with gap

duration either increasing or decreasing (again, in 4-ms steps between

0-76 ms silent gap). The second trial was adjusted for individual subject

responses to the first trial. If, for example, a subject heard a switch from

"say" to "stay" on the 6th stimulus in the first trial, then in the second

trial stimulus #1 was presented 5 times, then stimulus #6 was

presented, then the trial continued to the end, with each successive

stimulus presented once. Selective adaptation leads one to expect that

repeating the initial stimulus in trial 2 should cause listeners to switch

earlier, or at the same stimulus, as in trial 1 (contrast or critical boundary

should increase in observed frequency). Similarly, if the

preponderance of hysteresis observed previously reflects only a

response perseveration, then the incidence of critical boundary should

increase markedly because both trials present the same number of

instances of the initial category. Identical predictions are made by

Helson’s (1964) Adaptation Level Theory, which holds that all stimulus

inputs in a given domain are pooled and their running average

determines the level of stimulation to which the person is adapted.

Alternatively, if the underlying nonlinear dynamic model has validity,

then subcategorical sequential acoustic change, not simply perceived

repetition, enhances hysteresis. Results confirmed overwhelmingly that

only sequential acoustic change increases the frequency of hysteresis
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(Figure 8.3), a result that was later shown to generalize to the

perception of directional pitch (Giangrande, Tuller, & Kelso, 2003).
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Figure 8.3. Comparison of switching behavior in sequences that contain systematic acoustic
change with matched sequences that instead repeat the end-point category (see text).  Percent
of sequence pairs perceived as switching at the same stimulus (critical boundary; white bar),
systematic stimulus change switching earlier than random change (contrast; gray bar), and
systematic stimulus change switching later than random change (hysteresis; black bar).

Yet another test of the model’s predictions began to address the

role of learning and experience.  Recall that enhanced experience (of

which stimulus repetition is one example) causes the potential to

change more rapidly.  Minimizing learning and experience should lead

to a majority of hysteresis response patterns; contrast should occur

much less often. To evaluate this prediction, we presented subjects with
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a single run of the “say”-“stay” continuum with gap duration first

increasing from 0-76 ms then decreasing back to 0 ms.  Another group

of subjects was presented with a single run of stimuli that began at 76

ms gap duration, decreased in 4-ms steps to no gap, then increased

back to 76 ms gap duration. The task was to identify each stimulus as

"say" or "stay." A subject's pattern of responding (hysteresis, critical

boundary, or contrast) was determined by comparing the gap duration

at which the perceptual switch occurred in the increasing vs.

decreasing portion of a run. Results confirm that when experience with

the stimuli is minimized, the proportion of hysteretic responses is far

greater than either contrast or critical boundary. In fact, hysteresis is

over 3 times more prevalent than any other response pattern and is

independent of the direction of change in gap duration. When the first

trial for each subject from Tuller et al. (1994) and Case et al. (1995) is

examined, results are statistically identical to those obtained when

subjects were presented with only a single trial (Figure 8.4).

Obviously, these experiments consider only a very restricted

definition of “phonological learning” in adults. Typically, when adults

attempt to learn new speech sounds, they do so in the context of the

phonology of their native language. From the perspective we have

been taking, it makes sense to think of perceptual space as a dynamical

system that is modified by learning. In other words, learning a new

phonological category (when a range of acoustic objects acquires a

common meaning) is viewed as the creation of an attractor that

modifies the existing dynamics. This allows us to predict how learning

will proceed, depending on how the stimuli are initially perceived by

the individual. In non-speech perceptuomotor tasks, evidence that
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subject.  TCDK: Tuller et al. (1994). CTDK: Case et al. (1995).

learning consists of the interaction between pre-existing constraints

that the subject brings into the learning situation and the behavior to be

learned has been provided by Schöner and Kelso (1988; see also

Schöner, Zanone, & Kelso, 1992). In their model, behavioral information

(such as the task to be learned) acts as a parameter of the attractor

dynamics, attracting behavior toward the required behavior. When the

former does not correspond to a stable attractor of the existing,

intrinsic dynamics, learning is predicted to take the form of a phase

transition: A new behavioral attractor is found that alters the entire

dynamics. When the required task is close to, or coincides with, an

existing stable pattern, cooperative mechanisms ensure that learning
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will proceed rapidly and smoothly (Zanone & Kelso, 1992; 1994; 1997;

see also Kelso, 1990).

How might these ideas impact upon the acquisition of new

phonological categories that a person has never used? If a listener

initially can perceive a non-native sound as "different" from a native

one, although perhaps still acceptable as an exemplar of the native

category, the existing perceptual landscape cooperates with the sound

to be learned. Operationally, the rate of change of the landscape to

include the sound to be learned, the progressive stabilization of the

new sound, should be relatively smooth and fast. In contrast, if a

listener initially perceives the non-native sound as indistinguishable

from a native one, then learning to recognize the non-native sound

competes with the existing perceptual organization. In this case, the

strength of the attraction of the to-be-learned sound increases until a

qualitative change (a bifurcation, or phase transition) reflects the

emergence of a new attractor. The rate of change of the perceptual

space to the new sound should be slower than when the initial

perceptual landscape cooperates with the new sound.  In addition,

because this competition entails destabilization of the existing attractor,

the bifurcation should be marked by high variability.

In order to test these ideas, it is necessary to modify the standard

experimental techniques used in phonological learning tasks in two

ways. First, it is not sufficiently informative simply to note whether

learning occurs with a particular stimulus set and training régime.

Observations of the changes in each listener’s behavior as learning

proceeds must supplement measures of whether the trained distinction

was finally learned to some criterion. Second, the focus of analysis must
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be the individual, not the language. As an example, consider Iverson

and Kuhl's (1996) investigation of native English speakers' perception of

English /r/ and /l/ in which multidimensional scaling analyses of

individual listener's similarity ratings of stimulus pairs revealed that the

warping of perceptual space corresponded best to the listener's own

identification patterns. Similarly, Aaltonen, Eerola, Hellström,

Uusipaikka, and Lang (1997) showed individual differences in mismatch

negativity EEG patterns depending on how the subject categorized the

stimulus sequence. In other words, perceptual learning as a result of

language training must be assessed relative to the individual's

perceptual space as it exists before training begins.  To do this,

appropriate probes, or maps, of the latter should be conducted prior

to, and during, the learning process.

In a doctoral thesis that embodied these attributes, Case (1996)

used the voiced Hindi dental stop consonant /d/, which is acoustically

similar to the American English alveolar stop consonant /d/, as the

category to be learned. The major articulatory distinction between

these two sounds is in place of articulation—in /d/ the tongue tip is

placed against the upper front teeth, and in /d/, the tongue tip is

against the alveolar ridge. There is no phonemic contrast between the

dental and alveolar place of articulation in either Hindi or American

English, although it is contrastive in at least a half dozen languages

(including Malayalam and several Australian and African languages;

Jongman, Blumstein, & Lahiri, 1985).

Here I will concentrate on the following questions: What are the

dynamics of the learning process itself? Does the form that learning

takes depend on the relationship between the sounds to be learned and
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how the individual initially perceives them? What are the effects of

learning a new speech sound on an acoustically/articulatorily close

native speech sound? That is, does an individual's phonetic system

reorganize during learning by modifying native categories (e.g., Flege,

1995)?

To answer these questions, we used a “perceptual mapping”

procedure that included three different tasks (identification, judged

goodness, and difference ratings). These tasks together allow a more

complete assessment of each listener's perceptual space than use of

any of the tasks alone. Each of the tasks taps somewhat different aspects

of speech perception. Identification tasks encourage phonetic coding,

and a variable stimulus context that includes different speakers,

utterances, and phonetic contexts facilitates robust category formation

with training (Lively, Logan, & Pisoni, 1993; Pisoni & Lively, 1995). The

judged goodness task examines the internal structure of a category in a

way that an identification task obscures, allowing the listener to

determine how good an exemplar of a category a given stimulus is and

focusing attention on differences among stimuli. Data from the

difference-rating task allow one to investigate the internal structure of

one or more categories simultaneously. Incorporating the results of all

three tasks gives a fuller picture of how a given listener perceives the

stimuli.

A group of monolingual American English listeners first

completed the three-task perceptual mapping procedure and then

participated in a 15-session training program distributed over a three-

week period.  Their progress was monitored throughout training.

Following training, the perceptual mapping procedure was repeated.
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Pre-training/post-training comparisons as well as daily assessments

during the training process were performed to assess whether learning

occurred and, if so, to reveal its dynamics. Persistence of learning was

evaluated by follow-up testing administered a few weeks after the

training was completed. This methodology stems from the scanning

probes of the dynamics employed during the learning process by

Zanone and Kelso (1992, 1997) in order to understand how, in their

case, pre-existing coordination tendencies were modified by

practicing a new skill.

The training stimuli, a list of /CV/ syllables and /αC V /

disyllables, were produced by four native speakers of Hindi (H) and

two native speakers of American English (AE). The consonant was

either /d/ or /d/ and the vowels were those in "hot," "heat," "hoot," and

"hut." Hindi speakers were instructed in the production of the alveolar

stop, and AE speakers were instructed in the production of the dental

stop. Three native speakers of AE rated all intended alveolar

productions and three native speakers of H rated all intended dental

productions. Only productions judged to be acceptable by all native

listeners were used in training. The final training set was acoustically

diverse in that it included 3 tokens each of the 16 different syllables (8

dental, 8 alveolar) from four H speakers and two AE speakers.

The test stimuli were a synthetic continuum of eleven syllables

with an initial stop consonant followed by the vowel /α/. The consonant

spanned a range from the Hindi dental /d/ to the American English

alveolar /d/ by manipulating the second (F2) and third (F3) formant

onset frequencies. Hindi listeners judged stimuli from the dental end of
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the continuum to be better exemplars of their native category than

stimuli from the alveolar end of the continuum.

Monolingual speakers of American English (AE) participated in

two pre-training sessions of about one hour each.  In the first session,

they performed the judged goodness and identification tasks. In the

second session, they performed the difference-rating task. For the

judged goodness procedure, subjects were presented with a

randomized set of ten tokens each of the eleven unique synthetic

stimuli. The task was to rate from 1 to 7 (poorest to best) how good an

exemplar of /d/ the stimulus was.

For the identification task, subjects were presented with a

differently randomized set of ten tokens each of the eleven stimuli.

Subjects were told that stimuli would be either a synthesized version of

an American English alveolar /d/ or a Hindi dental /d/. Differences in

how the two sounds are produced were described and examples of the

endpoint stimuli from the continuum representing the two sounds were

presented. The two-alternative forced-choice task was to identify the

stimulus as either alveolar or dental.

In the difference rating task subjects heard all possible pairs of

stimuli from a 6-stimulus subset of the continuum (stimuli 1, 3, 5, 7, 9,

and 11). Pairs were rated on a scale from 1 to 7, with 1 being “exactly

the same” and 7 being “most different.”

After the initial perceptual mapping subjects participated in 15

training sessions within a 3-week period, a second perceptual mapping

just after training, and another mapping at least two weeks later. Each

daily training session consisted of (in order) an initial free exploration

period, a two-alternative forced-choice identification task (with
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feedback) for a training set of 48 natural speech stimuli randomly

chosen from the full set of 288 natural speech stimuli, the difference

rating test, an identification task with feedback for a different 48-item

subset of the natural speech stimuli, and a second difference rating test

with a new randomization of stimulus pairs. If subjects had not been

paid for participating I doubt anyone would have completed the

experiment!

Although every subject showed some improvement in

differentiating dental from alveolar stop consonants in natural speech,

in what follows, I will discuss two subjects’ learning patterns in order to

address the questions posed above.

In the pre-training identification task with voiced stimuli, our first

learner showed some ability to identify the four extreme dental-end

stimuli as dental (Figure 8.5). Nevertheless, he still rated all stimuli as

relatively good members of the alveolar category (Figure 8.6). These

results are intriguing in that stimuli consistently identified as dental

were still judged as relatively good alveolars. This underscores not

only the poverty of using only a single measure of an individual's

phonetic perception but also the flexibility of perception.

In both the post-training and follow-up identification tasks, the

identification functions partition the stimuli into two clear categories

with more stimuli now being identified as dental (Figure 8.5). In

contrast to the pre-training mapping, however, stimuli on the dental

end of the continuum are now judged to be poor exemplars of the

alveolar category and the stimulus judged as the “best” alveolar moves

toward the alveolar end of the continuum (Figure 8.6).
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Learner #1: Identification
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Figure 8.5. Identification functions pre-training (solid line), post-training (dotted line), and
three weeks after training (dashed line) for learner #1.

Multidimensional scaling (MDS) analyses based on the

difference ratings were also calculated. MDS is a technique used to

uncover and visualize proximities in a low dimensional space and is

strongly related to methods such as principal component analysis and

cluster analysis. Although in many perceptual studies order of

presentation   of   stimuli   in  a   pair   is   presumed  to   have   no   effect
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Figure 8.6. Mean judged goodness (error bars indicate one standard deviation) as an
exemplar of the alveolar /d/. Pre-training (solid line), post-training (dotted line), and three
weeks after training (dashed line) for Learner #1.

(Schiffman, Reynolds, & Young, 1981), our earlier data suggested that

order of pair elements might indeed influence difference ratings (in

other words,  the initial condition,  or initial categorization,  matters).  In

the pre-training data, when the first stimulus in a pair is identified as the

subject's native category, stimuli that are acoustically closest to the best

exemplar are attracted or pulled in; dental-end stimuli cluster

separately from the alveolar-end stimuli. When the acoustically more

dental stimulus is presented first, there is little if any evidence of

stimulus grouping before training. In the post-training and follow-up

testing, the dental-first pairs also show an attractive effect, although the

effect is still weaker than that observed for the pairs in which the native

sound, the alveolar, is presented first.  When the day-to-day variability
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of the MDS solutions is calculated, total variability is relatively low from

the beginning of training and quickly decreases over the first six days,

remaining low thereafter. The initially higher variability in the total is

exclusively due to the degree of clustering across the alveolar-first

pairs (Figure 8.7).
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Figure 8.7. Total variability in the MDS analysis, as a function of day of training.

Our second learner showed a very different initial perceptual

mapping from learner #1, and a markedly different pattern of learning

over time. Pre-training, only stimuli 7 and 8 are identified at levels

different from chance (both as alveolar; Figure 8.8) and stimulus 8 is

judged as the "best" alveolar (although all stimuli were judged as

acceptable members of the alveolar category; Figure 8.9). After

training and in follow-up testing, this subject’s identification functions

showed clear categorization of the stimuli into alveolar and dental, with
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stimuli on the alveolar end of the continuum now judged to be better

exemplars of the alveolar category than stimuli from the dental end.

Stimulus 11, judged the best alveolar after training, was also judged a

better alveolar than before training (Figures 8.8 and 8.9).
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Figure 8.8. Identification functions pre-training (solid line), post-training (dotted line), and
three weeks after training (dashed line) for Learner #2.
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Figure 8.9. Mean judged goodness (error bars indicate one standard deviation)as an exemplar
of the alveolar /d/. Pre-training (solid line), post-training (dotted line), and three weeks after
training (dashed line) for Learner #2.

The MDS analyses based on difference ratings (taking order into

account) revealed that the pre-training solution does not respect

acoustic ordering, consistent with the initial identification results. By the

time of the post-training evaluation, difference ratings of the alveolar-

first pairs showed a tight clustering of stimuli into two groups

corresponding to alveolars and dentals; dental-first pairs also grouped,

although somewhat more weakly. Grouping of stimuli was tighter in the

follow-up as well, with less of an order effect. The total variability in the

MDS solutions is shown in Figure 8.10.  Total variability was initially

much higher than for learner #1 and showed a steady decline until,
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around Day 5, an increase in variability occurred through Day 9. This

increase preceded a sharp drop in total variability at Day 10 to levels

equivalent to those observed for learner #1. Note that the peak in

variability in judging the alveolar-first pairs may be interpreted as a

destabilization of the attractor corresponding to the alveolar category.
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Figure 8.10. Total variability in the MDS analysis, as a function of day of training.

To summarize, learner #1 showed an initial ability to distinguish

some of the dental-end stimuli from the alveolar, even though they

were still acceptable as alveolars. The pre-, post-, and follow-up test

results all indicate a smooth and rapid learning process occurring over

the first six days of training and the decrease in variability in his MDS

profile was smooth and fast. This is congruent with the initial prediction:

If a listener initially can perceive a non-native sound as "different" from
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a native one, the existing perceptual landscape cooperates with the

sound-to-be-learned and learning should be relatively smooth and fast.

This pattern is consistent with the idea of progressively stabilizing an

already existing stable pattern.

Learner #2 showed little evidence for an initial ability to hear

dental-end stimuli as different from alveolar-end stimuli. Variability of

the MDS solutions also began at a level nearly three times greater than

initial variability for learner #1, and the rate of contraction of the stimuli

into groups was slower than for learner #1.  After the variability began

to decrease, it reversed direction and peaked again just prior to

reliable clustering of the MDS solutions. This local increase in

variability occurred almost exclusively in alveolar-first pairs and can

be considered analogous to critical fluctuations that often precede

bifurcations  (Schöner, Haken, & Kelso, 1986). Again, these results were

congruent with predictions: If a listener initially perceives the non-

native sound as indistinguishable from a native one, then learning to

recognize the non-native sound competes with the existing perceptual

organization. This process is slower than when the initial perceptual

landscape cooperates with the new sound, and because this

competition entails destabilization of the existing attractor, the

bifurcation is marked by high variability.

One aspect of the data that has not yet been highlighted is that

learning the non-native category modified perception of the native one

(cf. Flege, 1992, 1995), especially for listeners who did not initially

parse the stimulus continuum. After learning, not only did the stimulus

judged as the best alveolar exemplar shift away from the dental group,

but the best exemplar was also a better exemplar post-training than
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pre-training. Thus the pre-existing phonological organization is

malleable. Learning does not entail simply an addition of a new

category but in fact changes the existing attractor layout (see also

Sancier & Fowler, 1997).

In the cognitive, behavioral, and brain sciences, large strides

have been made in understanding pattern formation using the concepts

of self-organization and the mathematical tools of nonlinear dynamical

systems (e.g., see Haken & Stadler, 1990, for a variety of different

contributions in this context; Kelso, 1995). Explicitly dynamical

investigations of speech include attempts to identify phonological units

with dynamically specified gestures (Browman & Goldstein, 1986, 1989,

1992; Kelso, Saltzman, & Tuller, 1986; Kelso, Tuller, & Harris, 1983), to

construct a topology of vowels (Wildgen, 1990) and consonants (Petitot-

Cocorda, 1985) in terms of a landscape of attractors and repellers

within an articulatory or acoustic space, and to model the phonological

system of artificial languages as a self-organized solution of talker-

based and listener-based constraints (Lindblom, MacNeilage, &

Studdert-Kennedy, 1983). In our own work (Tuller et al., 1994; Case et

al., 1995; Tuller, 2003), we demonstrated that changes in perception

that occur as the acoustic signal is altered are indicative of a pattern-

formation process in perception. A model of the results was proposed

and unique predictions of the model were tested and confirmed.

The approach also provides a theoretically motivated way to

understand the process of learning to perceive non-native speech

sounds (and perhaps the emergence of categories in development).

Fundamental to this approach is a methodological stance: Instead of

studying features of objectively existing prototypes (either as abstract
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linguistic entities or as stored multiple exemplars) in a group of

listeners, focus on the interaction of an individual perceiver with

speech stimuli in context. In this way, we have observed changing

patterns of categorization that parallel those observed in perceptuo-

motor learning (Kelso, 1990; Kelso & Zanone, in press; Schöner,

Zanone, & Kelso, 1992; Zanone & Kelso, 1992, 1994, 1997) and are

consistent with the notion that reliably categorizing a new speech

sound depends on whether the new category cooperates or competes

with an individual's initial perceptual capabilities and that learning

serves to reorganize the perceptual space.

In summary, I have described a program of research in which

the tenets of dynamical systems and empirical research on speech are

mutually informative and directive. In this, I have followed the basic

strategy identified by Kelso (in press), but applied to the study of

speech perception. This strategy entails (1) Choosing a level of analysis

and description that captures the behavior you are studying. (So if I’m

interested in how people learn to change their perceptual

categorization of speech, it would not be fruitful to choose to describe

the behavior in terms of the phasing of harmonics in the signal.); (2)

Prune away complications so that the essence of your question remains

foremost in the experimental design; (3) Focus on finding the

conditions that yield qualitative changes in behavior. Qualitative

change allows one to define the perceptual categories clearly as well

as to exploit the patterns of change as a key to the mechanisms

underlying pattern formation (e.g., dynamic instability); and (4)

Explore both the coordinative and the component levels as well as the

relation between them. How one defines the coordinative level and
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“one level down” depends on the experimenter’s insights into step

(1)—choosing the level of description. This last step, deriving the

coordinative level dynamics from the usually nonlinear coupling

among individual components, is as yet the weakest link in

understanding the self-organizing nature of speech dynamics.

Finally, the empirical and modeling strategy described here is

both speech-specific and generalizable. The approach has also been

fruitfully applied to the verbal transformation effect (Ditzinger, Tuller,

Haken, & Kelso, 1997; Ditzinger, Tuller, & Kelso, 1997) and more

recently, auditory streaming (Almonte, Jirsa, Large, & Tuller,

submitted). It also shares much with studies of the effects of attention on

behavioral patterns (e.g., Temprado, Zanone, Monno, & Laurent, 1999),

and with studies of learning from behavioral, theoretical, and

neurophysiological perspectives (Jantzen, Fuchs, Mayville, & Kelso,

2001; Kelso & Zanone, in press; Kelso, 1995; Schöner, Zanone, & Kelso,

1992; Sporns & Edelman, 1993; Zanone & Kelso, 1992, 1994, 1997). More

recently, neural correlates of the stability and change of behavioral

coordination have been uncovered using several methods that reveal

brain function, such as high density SQuID, multichannel EEG, and

functional MRI and PET (Daffertshofer, Peper, & Beek, 2000; Frank,

Daffertshofer, Peper, Beek, & Haken, 2000; Fuchs, Jirsa, & Kelso, 2000;

Fuchs, Kelso, & Haken, 1992; Fuchs, Mayville, Cheyne, Weinberg,

Deecke, & Kelso, 2000; Kelso, Bressler, Buchanan, DeGuzman, Ding,

Fuchs, & Holroyd, 1992; Kelso, Fuchs, Holroyd, Lancaster, Cheyne, &

Weinberg, 1998; Mayville, Bressler, Fuchs, & Kelso, 1999; Mayville,

Fuchs, Ding, Cheyne, Deecke, & Kelso, 2001; Meyer-Lindenberg,

Ziemann, Hajak, Cohen, & Berman, 2002; Ullen, Ehrsson, & Forssberg,
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2000; Wallenstein, Kelso, & Bressler, 1995). Behavioral investigations

have been spurred by, and have spawned, theoretical work at the

neural level (Fuchs & Jirsa, 2000; Haken, Kelso, & Bunz, 1985; Jirsa, Fink,

Foo, & Kelso, 2000; Jirsa, Friedrich, Haken, & Kelso, 1994; Jirsa & Haken,

1996, 1997; Schöner, Haken, & Kelso, 1986; Schöner, Jiang, & Kelso,

1990; Treffner & Turvey, 1996) that is rapidly becoming more

neurobiologically grounded (Frank et al., 2000; Fuchs et al., 2000; Jirsa,

Fuchs, & Kelso, 1998; Jirsa & Haken, 1997).

Despite this wealth of information concerning the dynamics of

behavior, the specific boundary conditions and control parameters that

establish the context for speech phenomena, the coordinative and

component levels that makes sense in speech, are specific to speech

and must be identified within the speech context.  “Dynamics” in and of

itself will not give us the answers—it must be fleshed out for each

system under study with conceptual content and implementation via

experiment, simulation, modeling, and theory development.
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