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1. Background and Chnrge 

Science has always been data-driven, but what is changing dramatically is !he amount of data 
with which scientists now engage. 111e !l. lathematical and Physical Sciences (MPS) community 
generates much of this data. Major experiments and facilities are now generating petab)tes of 
data per year that must be distributed globally for analysis. Projects already in devciopment will 
generate much larger volumes ~t f~ster rates, approaching an eXab}1e per week, with exaflop 
computing capacity needed to perfonn the analysis. 

In addition to this growing number of prodigious 111ta generators, virtually all of science is 
becoming data-intensive, with increasing size and/or complexity, even at the level of Pis in 
individual labs. This trend extends beyond l\ IPS disciplines to: biological data; financial, 
conUllercial , and r;:tail data; audio iUld visual data: data assimilation and data fusion; data in the 
humanities and social sciences; web-based data; and governmental data. Virtually all disciplines 
need potent ially radical new ways to manage th is data, as well as major mathematical, statistical, 
and computational advances to utilize these data sets, if the enonliOUS potential scientific 
advances arc to be realized. 

·111is data_crisis facing science and society has been widely recognized (see, e.g. , The DolO 
Delllge, in 111e Econom ist, Feb. 27, 2010, and the many reports listed in Appendix A). But it is 
particularly relevant to the MPS community both because of the SCVCTe challenge, yet enonnous 
potential reward. inherent in dealing with the data-crisis and because much of the solution will 
require fundiUn~'Iltal advances in the data sciences, of which matht:'lllatics and statistics within 
MPS is a highly prominent part. 

Chargf": The MPS Work.~hop on Data-Enabled Science is charg~d with providing 
(1) a high-level assessment of the needs of the MPS conmmnities, including anticipated data 
gcneration. capability and inability to minc the d.1ta for science, strengths and weaknesses of 
cnrrent efforts, and work on developing new algorithms and math~matical approaches; and 
(2) an assessment of the r,,>source requircments for address ing these needs over the next five 
years. 

2. Executive Summary 

To reaiize the e:-1 raordinary potential for scient ific advanc.: inhere"t in the data-crisis, two major 
hurdles n~'\:d to be overcome: (I) Data Management and (2) Scientific Inference from massive or 
complex data. We summarize the major issues involved in each hurdle below~ details and 
eXiUnples are given in later sections. 

Data MUlwgemell(: Handling the enonnity of arriving and soon-to-arrive scientific data requires 
complex and new strategies iUld understandings. Components of this managClllent include: 

• Designing the data collection strategy. 
• Collecting the data from eithCT single or distributed sites. 
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• Preprocessing (if necessary) to keep only the most essential data. 
• Storing tb.:: data, with appropriate m.::ta-data to cnsUI"e usability. 
• Ensuring accessibility of the data by scient ists, possibly through layered distribution of 

the data to multiple sites. 
• Providing platforms and software that enable efficient use of the data by scient ists, as 

well us allowing for capt llr", of the scientists ' post_processing of the data. 
• Ensuring enration and preservation of data. 

Sdellfifu: ilifert!/lce from Mani,'e. or Comple.x Data: There are major challenges in producing 
breakthrough science from massh·e or complex data. Note that we emphasize CQIllplex data in 
this discllssion as well as massive data; what might appear to be of modest size today (e.g. the 
number of genes in the human genome) can cause us severe inferential difficulties as massive 
data when considcration is givcn to complexity (e.g. , the need to considcr the vast mliititudc of 
possible genc Iletworks). A fcw of thc overarehing chal lenges are given here; others arc in later 
sect ions. 

• Scalability is a primary concern; much of sciellc,", today uses · small data' methodologies 
for sciemific inference, stnltegies that are ill-equipped for today·s mass ive or complex 
data. As but one example of the scalability crisis, while many thousands of astronomers 
(and data scientists) have used thc Sloan Digital Sky Survey (SDSS) data collection over 
the past decade, with over 2000 refereed publications (making it one of the most 
scient ifically productive data repositories in the world), nevertheless still less than 10% 
of the SDSS imaging d.lIa ha\·e been retrieved and analyled by individual scient ists. The 
Large S)lloptic Survey Telescope promises to blow this gap wide open, by three orders 
of magnitude, with the acquisition of one SDSS equivalent amolUlt of imaging data each 
and every night for 10 years. Without ad\'lInced data science (mathcmotics/stat istics, data 
mining, Ind machine leanling) algorithms and methodologies tuned to and applied to 
snch a data flood, we cannot hope to reap its ful l scientific discovery potential. 

• 11lcre will be a dynamic tension between the desirability of broadly useable approachcs 
to data-enabled science - across applications and disciplines - ;ll1d the frequent need for 
solutions tailored to a specific selling. 

• Mechanisms for transference of methodologies between disciplines is a major nccd; MPS 
is well-positioned for this, because mathematics and st.at ist ics have traditionally been the 
major disciplines for effecting Silch transfer. 

.. Data-enabled science is not just data exploration and understanding; it is often using the 
science 10 provide the insight thaI unlocks the <l.1ta. (One calUlot find a needle in a 
haystack without k1lowing what a haystack is or a nc.::dlc is.) 

• Understanding how to deal with the multiplicity issue - distinguishing a scientific signal 
from noise, when a large data set is subjected to a massive number of probes - poses a 
major challenge. 

• Fundamental advanccs in the methodology of data-enabled science often require 
awareness of the ent ire spectrum of thc problcm; from the nature of thc data to 
computational issues (e.g. parallcli7..ation) in the final analysis. 

• There is frequently a need for realtime analysis of the incoming data-stream. 
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Ol'crall Reca",mcm/lIIioll 011 DlIIa-Ellllblet/ Sciellce: We urg~ the /1011'S Directorate to obtain 
\'cry signilicanlldditional funding to support d3la-cuabled science. 'nlis funding could he used 
for new d:tta-cnabled science initiati\'cs or to provide targetcd addition:tl support to the MPS 
Divisions for data-enabled science act ivities, support that could be applied to individual 
invcstigator awards, group grants. ecnlcrl:i. and f:lcilities, as the individual Division d~cms moot 
appropriatc. 

• Funding of data-enahk-d science will require the same process care by NSF program 
ofiiccrl:i as funding of interdisciplinary research. 

o Peer r.:\'icw~'TS in all MPS review piUlels should be clearly infomlcd as to the 
unique evaluation metrics that apply to cross-disciplinary DES research proposals, 
wh ich bridge both data sciences (including scientific data management. scientific 
dJtabasc ~search, mathematics/statistics, d'lta mining/machine learning. mId 
visualization) and the traditional physical sciences. 

o Dedie:lIed d3la-enahled science review panels should be utilized when 
appropriate, certainly at the Di"isional Ic"d and possibly at the Dircctorate IcvcL 

o If support is through additional funding to the Divis ions, t.lI'S tracking 
mcchanisms should be developed to i rt~urc acoountability for these targeted funds. 

• Funding should be made available for needed Workforce enhanccmcnts: 
o Suppon d~dieat~d Early CAREER awards for young facult y specifically in DES 

T(search areas. 
o Suppon dedieat~d f~lIowship programs (graduate and postdoctoral) in DES and 

Data Science research areas. lbis would be similar to the NSF Fcllowships for 
Translonnati ve COIllI)utatioual Scknce using Cyhcril1fra~tmcturc (CI TraCS: 
ht1 p :llwww.nsfgol./pubsI2010In~n05S3I n sn 0553. htm ) 

o SIIpport workfor~'e del'elopr11(:nl in can.::en; associaled wilh data handling and 
understanding. 

o Provide stronger DES research support for scientists working within large dat3· 
producing projects dming constmclion, commissioning, and early operations 
phases. This cnabks carly science n!sults from these filcilities specifically Irom 
the people who kllOw the facility and its data the best. 

o Provide REU supplemcnts in data-enabled science. 
o Suppon educational initiati\'cs in dMa-enabled science, including the training of 

computational scientists for scienlific inference with massive :md (.'(jmplc." dab. 
(So:.>;,: section 3.1 for numerous concrete suggestions.) 

ReCflmmemlatio/ls fill Data IHaJlUgemeJlt: 

• For facilitie s. data management is a major (but oftcn wlfuudcd) oomponent of operating 
coots, As part of the overall NSF strategy of funding facility operming coots. dedicated 
data management operating funds should be provided and tracked. This should include 
funding for data management perl:ionnel and software devclopment. 

• Project proposals which deal with massive data should include a data management plan 
consistent with the size. ool1awrativc structure and funding scale ofthc proj~ct. 

o 'n,e plan should address (a~ r<!levant ), meta-data, :tceess, long tenn funding. data 
storage. computational rcqujrcmellt~. mId standards. 

o Data i\ lanagement with massive data rcquirc$ signilicant innovation, and new 
nmnag.::rnent ideas should bc encoumged and supportcd (recognizing they mighl 
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fail). Confcrcnces or othcr vehicles for sharing of data managcmcnt innovations 
across facilities and disciplines should be crcated. 

• NSF should continue to seck mechanisms to ensur.:: that data arising from funded NSF 
projects I;Ie made public (UI a useable fonn) within a reasonabic tiOlc pcriod. 

o Otherwise, reproducibility of scienCll will be at question. 
o Without this mandate, science wil1lose much of this major resource. 

Recomrnt!lldat;um' 011 Scielltijic Illferellce: 111e scope of nceded fundamental advances in using 
massive or complex data for scientific inference is cnornlous. Some of the most urgent needs arc 
listed her;). Others can Ix: found in thc discipline-specific sections. 

• Advances in fundamental mathcmatics and statistics are needed to provide the language, 
structure, and tools for many of the needed mcthodologies for data-enabled scientific 
inference. (See section 3.4.) 

• Algorithmic advances in handling massivc and complex data arc cnlcial, including 
methods of exploiting sPlirsity (e.g., out of a huge lis1 of proteius, only all lUlknown f~w 
may be acth'c in a particular metabolic process), clustering and classification, data 
mining and machine learning (including feature detection and infonnation c)l.1raction), 
Bayesian analysis and ~Iarko" chain Monte Carlo mcthodology, lUlomaly detcetion, 
optimization, and many mon:o 

• Potentially major tools for the characterization and interprctation of massive and complex 
data sets include visualizatiOIl (visual analytics) and citizen sci~ncc (human computation 
or data prOCl!ssing). 

• Data assimilation and lUIcertainty quantification - namcs given to the interface of data 
and computer modeling of processes (simulation_enabled science) - require:; special 
focus as the basis of much real-world prediction (c.g. , of the effects of climate change). 

• Progress in new areas of data_enabled science will require teams consist ing of 
combinations of disciplinary scientists, data-scientists (induding mathematicians, 
statisticians, and machine learners), and computational scientists. Mcchanisms for 
snpport of such teams are needed: the current lllcchanism of occasional joint initiatives 
between divisions is too transient for the future data_enabled science world. 

Of coursC. many of thcSo: issues arise th roughout sciencc_ cngineering and society. TIlcy arc also 
of NSF-widi: importancc and of importance to numerous other agcncies and the nation. We hen: 
primarily highlight MPS issues in data-enabled scicnce, while rcoognizing that solutions to the 
ovcrall problem may well require a coordinated national (and in\emational) effort. 

We also note that MPS developments in data-enabled science will likely be major drivers of 
solutions to d.1ta-enabled science problems in general. The data managcmcnt mcthodologies 
arising frOlll major MPS facilities and thc fundamcntal breakthrollgllS for scientific infercnc~ 
from massivc or complex data that arise through mathematics, statisties, and other ~ IPS 
disciplines will have major impact in other sciences and society. 
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3. Duta-Enabled Science and the MPS Divisions 

3.1 Astronomical Sciences 

While there are a plethora of astronomical research projects for which the access to and 
understanding of large-scale data is critical, exploration of the time-domain is perhaps the most 
r.:volutionary. Facilities now in operation and others planned for thc conling decade will observe 
the night sky systematically, with a cadence ucver befon: aehic\'ed. At this le\'c1 of sampliug 
virtually all stall> in our Galaxy become non-stat ionary, and many will be discovered to bc 
variable in wa~s not previously known. Other variable, episodic, and transient t:'o'c nts­
supernovae, novae, accreting black hol.!S, gamma·ray bursts, gravitatioual microknsing C\'cnts, 
extffiSolar planeury transits, incoming ast~ roids, trans-Neptunian objects-will be recorded at 
rates ]00·] 000 times higher than in the past. 

In orner to make sense of the IOJ to 10' detcct ions of transients per night , and to aid other 
observers in assessing the need for and priority of follow.up observations, analys is and 
probabilist iC classificat ion of evcnts will have to be highly automated. A combination of 
advanced machine learning technologies with hmncdiatc access to e),:taru , distributed, mulli. 
wavelength data will be needed \0 make these assessments and to construct evcnt not ices to be 
autonomously distributed to robotic observatories for near·real·time follow.up. 

"l"ne scient ific implications of these capabilities span all areas of astrophysics: planet fonnation 
and the prevalen~e of extrasolar p lan~1ary systems, stellar evolution and the structure and history 
of our Galaxy, galaxy formation and e'o'olutiOIl. active galaxy phcnomella (quasars. blazars, 
Seyfm galaxies), the distribution of dark matter in galaxies and clusters of galaxies, and the very 
nature of the c()smos on the largest scales. The most important and excit ing astronomical 
disco\'cries of the coming decadc will rely on rescarch 3/ld development in data science 
disciplines (including data managemcI\I, access, integration, mining, alld analysis algorithms) 
that cnnblc rapid infonlmtion extractioll , knowkdge discovery, and scientific decision support 
for real·time astronomical researeh facility operations. 

Specific AsfrOlwmy Data-Ellabled ScieJ/ce ReCOmmelldllliQIIs: 

1. Data man~gc11lel1t 

a. Support core facilit ies at adequate level so that data processing and data management 
art Ilot eroded by other oper-dtional requirements. 

b. Illcorporate data managemcnt planlling from the outset 
c. [>rote~ data managcmellt budgets from hardware cost ovemms 
d. Manage data close to source of expert ise, recogn izing that data management is 

illherently distributed 3/ld that data centers will vary in scale 
e. Adopt romlnunil)"_widc standards for mctadata to facilitate discovery, access, 

integration, and re·use 
i. Illtemat ional VO standards for data collect ions 
ii. Stalldard access protocols 

Ill. r-lal1agcnlCllt of virtual data spaces 
iv. Authenticat ion/authorization as needed 
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f. Close the gaps in astronomical data archiving 
I. Engage private obS~rl'a lories to cstab lish coherent. eommuni ty-acccssibic 

archivc facilities, especially in cases where privatc lacilitics accept NSF 
support for instnulIclllalion and/or lacility augm~ntatiOIl 

II . Capture high-level data products associa ted with peer-reviewed publications 
and manage as community data r.::sourcc with VO-compliant acccss 

iii. [),:: \'c lop stl11t.::gies for 10ng-tcnl1 clll11tion and pr~scrvation of sur\'~y data 
(c.g .. SDSS). perhaps in co llaboration with NSF Datru~ct progntms 

il'. Support creation of advanced data products from archival colkctions (source 
catalogs, cross-matchcd source identifications, parameter extract ion for 
specific types of astronomical objcct~) 

v. Establish programs for digitizatioll of legacy data collections: the 
photographic r~cord (imag~s, spectra) is on the rergc of being lost 

2. Analysis lUld visualization 
a. Invest in new sortware lUld databases aimed at exploi tat ion of large alld distributed 

data co llections 
b. Io. lodemize widely uscd tools. with built_in access to distributed data through VO 

servi,c stlUld a rd~ 

c. Suppon algorithm de\'eloprnent rc13ted to largcldistributed data and scak-up existing 
algorithms 

I. Ch.L~kring and da~silica1ion methods 
ii. Bayesian statistical analysis and Monte Carlo Il"1arl;o\' chain approaches 

iii . Visuali ~a t iOl\ ortargc. many_dimensional data sets 
d. Support interdisciplinary resourccs - moleeular spectral linc databases (astronomy, 

molecular chemistry). atomic spcctT'.lllinc databases (astronomy. atomic physics) 
e. Suppon collaborative research with industry that utilizcs emerging tcchnologies for 

data-intensive science (e.g. , th ~ recent NSF-MitTosoll MOU for data-intensive cloud 
computing: hnD:" "'''' ''' .n~ r. go"Jpuw;f20 I 01 n ~n 0027Jn~n 0027. j ~p ). 

f . Support collaborations among astronomers. statisticians, nHithernaticiallS, and 
computer scientists. The NIH program in infornlatics is a successful model of the 
kind of n.:search objecti\".::s that would be useful m astronomy: 
hnp : /lgra nts.nih. go"'grantsJgu;de/pa- filc~ IPA-06 -094. htm l. 

3. Archival rcsearch 
3. Support PI-based archival r~'Searc h programs through program sol icitations focus.::d 

on 1I$~ of archival d:'la 
I. Archivc-enabled research stands on cqual footing to new observations 

II . Archivc research draws on both ground-bascd and space-b.l sed obsenlat ions 
iii. NSFIl\'ASA co-sponsorship? 

4. Community workshops, oommunication. professional outreach 
a. Support annual CQmmunity workshops that focus 011 DES. Oata Science, Infonnatics. 

and Larg~ Science Oataba.~e l'roject.~ (e.g., LHC, LSST, UClO, 001, NEON). in 
order to develop th~ field, share l es~ons learn cd. offer workforce dC\'cloprncnt 
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opponuuitics. and provide a n:nue for ~ducatil1g thc sc i~ntific community in DES 
r~s~arch_ 

5. Educat ion and public outreach 
a. Work with EHR to support STEM education rescarch programs that focus 011 the 

developmcllt of curricul'l and edllcational programs al Ihe intersection of physical 
~c i;::nces and data sciences. Support for programs thai (a) demonstrate the p;::dagogical 
value of introducing th~ reus.:: and illlalysis of se i;::nt itic data in inquiry-based STD,-I 
learning. (b) promote computational and d,lIa literacy a(TOSS Ille STE~I curriculum. 
and (c) ~"lcouragc education research in the sdence of [e,lming from large data sets 
(hllp: lfscre.c:lrl cton.cdull~~i ngd.'t aO. 

b. Mandatc an outreach component in all major projects and facil i!i~""S - reward 
inno\'ati \"e public uses of mission/project data (e.g. , Citizen Science). Support 
conslll1ction of infrastmcture th,11 r.lcilitatcs the development. sharing, and 
transparenl r'::IISc of dala products that have ped.lgogical value and Ihal serve a broad 
public audience. not ju:;! prof<:ss iOlla l researchers. 

c. Fund tile de\'c1opnKTlt of digital librari es tllat provide a p~'TmanL'1lt r.:pository of data 
science curricula materials (and data sets \"eIl L>d for education usc) for diITeTelll core 
science a.~ a mechanism for easy transfer of DES knowledg.::, data.centric lesson 
plans. and 1\.lI'S-rcJated sciene.: r~'S ult~ to both infonnal ,md fomml education \-em1l:~. 

d_ Fund infonnal science education and human complllation ini ti3til'es that c;."end the 
discovery pot~1lIi:ll of large science data sets (c_g , through Seiencc@ Home or Citizen 
Sci~llCe activities). 

e Fund the development of data science software tools (for data access, manipulation. 
mcasurem"nt. mining, analysis, and visualization) for use in infonnal and fomlal 
educt tion. 

3.2 C hemistr;' 

Data Enahkd Sci~nc~ (DES) uses tcehniques in statistics and high pcrfonn3nce compnting to 
,malYl': complex d.lta ~cts and extract featur.:s ofscientific int~resl. TIleSe complex data scts can 
be very large data sets limn single experiments or IMge collcetions of data i"rom sewral sources. 
In these cases. visualization techniques and data mining procedures ha\'e the potCtltial to 
dramatically increase the rate of scicntific discov.::ry. 

Although chcmistry and materials science typically generate small scale data sets eOlllp:!r~>d to 
field s such as astronomy mId high energy physics. many experiments ar~ beginning to gcnt"Tatc 
s ingltNun data se ts thai cannot be easily anal~'led by conventional techniques. These 
experiments arc usually multidimL1lsional and involve coupling a high throughput chemical 
3nal}'sis technique. like mass spectrometry or broadband spectroscopy, to an excitat ion source 
such as a lasl'T. 'nlese mult i-dimension:!l le chniq\1e~ arc often required to analyz<: complex 
sample mixtures or to examine reactivi ty as a fl11lction of deposited energy. Current techniques 
in the eomhustii)1l and r~actiOll dynamics fi elds, such as Multiplexed Photo-ionization Mass 
Spectrometry. ar~ gcne.-at ing ~ ingl~ -<:xp"rim~nt data ~ct~ on Ihc order or 50 Gil th'lt would 
bcn~fit signific'11ltly from statistically robust visualization methods. 
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Several other areas of chcmical and matcria ls research an; also producing large data sets that will 
continue to ilK:rcase in size and complexity. In particular, molecular dynamics simulalions in 
biochemistry al:d materials science generate large scale computational data from single 
laboratory studies. The usc of graphics process ing units in computational chemistry, for 
example, has lcd to simulations Ihat producc terabytes of computational output per day. There 
are also large data sets in re lated fields of science, such as radio astronomy, that contain 
Iliolecular infomlation that requiri: ncw analysis tools to e:..1rnct the chemically useful 
infonnat ion. 

Finally, several of tile industries that employ chemistry and material science Ph.D:s are rapidly 
pursuing DES strntegies to decrease product de\·elopmcnt cycles. Providing research esperiences 
for graduate students will beoome increasingly importiUlt for preparing young scientists for the 
futuTe workforce. Therefore, despite the "single laboratory" tradi tion of chemistry and material 
science research. issues in DES are already significant in chemistry and will continue to gain 
importance. 

Specw! Needs j(J1" Chemistry alld Material Scit!llCl!! 

As noted above, chemimry and materials science tend to perfonn research in a single.laboratory 
1lI0del. lncr.:asingly, each individual laboratory is generating large scale data sets through either 
computational chemistry, large user facilities (such as SLAC, NIST or ORNL) or higll 
throughput laboralory methods. However, the potentially greater opponunity for DES in these 
fi elds is the combination of research data from all groups in a research discipline. For example, a 
unified spectroscopic database from e!n~fging high throughput spectroscopy methods based on 
frequency comb spectroscopy and direct digi tal spC(:troscopy could ha\'e a major impact on 
n: latcd fields of astronomy, envirOlmlental science, and anal)1ieaJ chemistry that rely on 
chemical idcntifie'ltion by spectroscopy. Efforts are already underway in the computational 
chemistry community to create common data bases to pemlit reuse of these I\.'Suhs (examples 
include iOpenShell (Krylov), the Stmctural Database (Johnson)). Unified collections of 
individual d.1ta sets in materials science and dmg discovery could significantly incr.:ase the rate 
of discovery and add increased value to the individual laboratory data collections. 11le oonccpt 
of unified data sets from whole communities of chemistry represents a major shift ill the single. 
laboratory culture where data is often closely guarded. 

t\ special area of DES with great potential in chemistry and matcrial scicllcc fields is the 
combination of laboratory or facility measur~ments and computational chemistry to provide real· 
time chemical analysis. ~·Iany experiments in chemistry rdy on theoretical analysis or 
computational simulat ion to inte'1'rct the eKpcrimcntal data. In almost all cases in chemistry, 
these tasks are pcrfomled scp.lratcly and ollen by difl'cr<."111 research groups. For example, iUl 
esperimental group will collect the data set and send it to a co ll aborator in computational 
chemistry for analysis. The possibility of closing this loop in real-time would make it possible to 
opt imize experimental conditions in a si ]1gle experimental run aud, therefore, greally decrease 
the time required to perf 0 1111 the crucial experiment to reveal the irnponant chemistry. Oll·the· 
fly analysis methods are also needed to r.:alize the full potentia1 of new techniques like 
broadband spectroscopy using frequency combs or digital electronics. Spectrometers based on 
direct digital spectroscopy will soon be capable of measur.:ment throughput of about I TBlhour 
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(spcrtnnn a.;qui~itiOlls rates of300 spectrals with 1 million data points per spectrum). Coupl ing 
high perfonnance computing to concurrent measuremL"1lts could be used to pcrfonn on-line 
spectral analysis in high throughput analytical systems to enable library-free chemical detection 
and create systems that provide ''sample in - structure out" rea l-time analysis. 

Another area of need for chemists is a lack of standard and compelling visual ization tools. High 
pcrfonnanre computing tools and software that provide \~sua1ization of chemical models, 
proc.::sses and stm.::turcs should b.:: developed. NSF should provide funds to support both the 
people who develop the computational interfaces and software as well as the hardware to handle 
the data manipulation. ~Iuch of the massive data generated with local and faci lity 
inslmmentation is co llected in phase space and frequCllcy, and needs to be converted into real 
space and realtime. With appropriate software and algoritiuns, visualization of the r.::al structure 
and dynamic modes and paltcms emerging from the data can be obser .... ed and interpreted. In 
addition, science is bener communicated to the public and as an educational tool through visual 
representation of interprcted data. 

SpecifIC Chemistry DattrEllObJed SCU!IIa'! RecomnumdatwlU: 

Thc NSF should dcvelop funding opportunitics that providc inccntivcs for rescarch communities 
in chemistry and materials science 10 reach agreements on d.1ta sharing protocols, including data 
fonnalS and associated meta data. ·These programs will need 10 include continued support for 
curating and validating the data collections so that users within Ihe research community and 
outs ide the direct community trust the content, sccurity, and futur.:: accessibility of the collection. 
Additional support 10 develop discipline-specific software tools, perhaps through collaborative 
research opponlilities in math, stat istics, and computer-related disciplines. to navigale and mine 
the data sets will also be required. illSlmmCTIt devdopment that cmphasizes real-time data 
analysis and visuali:£ation through the integration of high-perfonnance CQmputing with state-of­
the-art instrumentation should be encouraged. TIle NSF should also support interdisciplinary 
educational opportunities thattr.un cilt!mistry and material science students in dala-related fields 
to belief prepare thcm for future opportunities in industry and government positions. 

3.3 Materials Resea rch 

111e frontiers of computational materials science research, supported within the Condensed­
Matler and Materials Theory and ~bterials Ch<:mistry ar<:8S, acr driven by Dala-Enabled Science 
(DES). DES within matcrials CQmmunity constitutes a necessary "fourth paradigm" with in the 
now-standard theory, experiment, and computational simulations paradigm defining our modem 
research and discovcry. While the comlllunity has ex1ensive efforts in a number of challenges, 
supported by varions NSF programs, in high-perfomlancc computing, algorithmic dc\·elopmcnts, 
computer-architoctuTl: utilization, e.g., GPU and vector acrclcrators, DES is at the heart of 
critical-need materials de'lelopment and of challcnges in understanding of complex materials 
SystCllIS. Large.data sets and data.mining critical inforolation from that data (e.g., intrillsie 
CQITdations betwecn stmclure and property) are increasingly importanl in materials science and 
engineering, and increasingly necessary for breakthroughs. Managing, storing, sharing, 
utilization and visualizing these dala fronl diverse materials areas require new approach!!!! and 
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nell' devdOJlmenL~ in eyberinfrastmctnre. and, eSJleeially. a huge cultural change wilhin the 
community and from other critical communities thm wi ll hal'e great impact 011 DES sucC\!ss in 
the materials community, such as critical computcr science experts in the dntnbllSc research and 
archiUcturc arcn.1S. In addition, although materials data often is more heterogeneous than other 
areas. the material~ community can bendit in DES from advances made in olher cornrnunitiC!;. 
snch as biomedical database (sec. e.g., hnp:/1\'1 .:<: .orglsbe«) and the Sloan Digital Sky Survey 
(h ttp ://'\'ww.~d~< . or!!). as well as lrom tools dC"cloped to describe, manage. archive. and 
disseminate data, such as 1'.'latDL Pathway (http://www.matdl.orn). an effort that, nonetheless. 
did not solve workflow in-lie)'. and the materi,l ls community'S data remains an afterthought. 
Other cri tical ar(1IS are data prOVen,ILICe ,\lid data security, while providing an open r~source for 
NSF,supported s.:iencc efforts. 

Cmrcntly, standard workflow is a bottleneck to progress; namely, thcre is limitl-d sharing of data 
and data products. Data is provided on ·'need·to·know"' bllSis, peer·to-peer sharing diOicult 
(learning CIIl've b~ween groups), no meaningful relationships between files and data products 
(need for meta-data and workflow). data lost over time (storage and managcmcnt) or \ILlable to be 
found or searched except by peTlion who gcnl"Tatcd them (unusable but e.\isting data). 

111ere has be~n a vision d~\'doping O\'er recent year.<; . referT<~d to as Integrated Compmational 
Matcnals Engincning (lClvIE) in recent NAE report~, where computationally·dr;ven materials 
developments is a con: activity of material sckntists and engineering in coming decades. along 
with standard expcnmentally.driven l113terials engineering. As such, hoth data from compUiatioll 
and simubtion r~scarch and e:>1perimcnt arc criticaL Certainly, there may no "one.stop·· solution 
for the cntirc community, HOII"e\'er. even having research groups with similar applications and 
data nccdcd could provide a "local community" elTon with much mort: robust dnta access and 
management with useful tools to enh~nee DES for their entirc eonul1I1nity (sharcd resoun:e and 
dcvelopment). Overall. most of the mnterials community desired an easy, searehable access to 
full research product an)1ime and from anywhere. so as to provide CQlIaborations with semnlcss 
and protected !haring of d,lIa and metad.1ta. Data repositoril'S require new advances in 
cybeTliecurity and large-scale networking for geographically dispeTlie t'Ollaborations. 

11ms. from the NAE report, the ICME cybcrinfrastnK:ture will be the cnabling [rmncwork for 
DES :ILld DisCQ\'ery. including librar ies or materia ls models, experimental d.1t3. sollware tools. 
datamining tools. To accomplish this task, the creation of accepted ta.xonomy, infomlatics 
teclUlology. as "dl as materials databases with opcn access is ~ssentia1. "J-:nowledgc Bases" aTe 
the key to captul\!, curate and ,U"chive iufomlation to succeed with the vision for ICME. 

To aCCQmplish thesc needs, the cultural mllst be chml gL'S , as there is no cultur~ for massive 
datasharing, and no incent ivcs from funding agencies for sharing. Multi·agencies issues. as 
opposed to NIH modcl. means tlmt funding .\IId coordination arc modest for needed 
cyberinrrastmctur .. (database. securi ty, cllf:ltion. etc.). III addit ion, the cuhur~ to support cross· 
disciplinary dc\".lopm~"11t$ for DES in materials science is cri tical. For e,'(amp l ~, recent f'Uld,ng 
calls within NSF certainly pemliUt-d databa.~e develop elTorts. Howevcr, reviewer.; from the 
databa;;e research mId architecture within cOlllpUlcr·science often found the dnlabase research 
"not grollndhrcaking", while acknowledging that the impact on Ihe DES materials side would be 
significant. eITcctivdy killing any fWlding possibility. Changing the mindset ami the cultural to 
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pernl;t cross-di&ciphnary support for DES in matcrials science based on coordinated 
developments wIth critical computer sdence research. which are often e",raordinari ly usefu l for 
real DES but not "not groundbrcaking database research", is a critical need (or success. 

3.4 Mathematka l Sdences 

The era of data-enabled science (DES) opens up e;>;:eiting research (ront iers for the Division of 
~-Jathematica l Scit:nces, even as it poses enorniOUS challenges. lbc challenges can be classified 
into at least three broad categories: ( 1) e;>;:tcnding existing theory :Uld algorithmic tedmiqucs to 
new scales and new applications, whcr~ current methods b..'Com~ bonlcnecks, (2) developing 
new theord ical approachcs ruld algoritiuns and demonstrating them on benchmark problems, (3) 
collaborating on real-world applications with domain experts in science, engineering, and policy 
making, where the availability of new types alld quantities of data offers the hope of scientific 
breakthroughs. 

TIlere arc nHulY fresh technical results in basic disciplines such as linear algebra (e.g. , tensor 
orthogonal decompositions), appro).: imation theory and hannonic analysis (e.g., sparsily and 
customized basis sets), 3f]d stalistics (e.g. , Ihe revival in Bay..."ian anal ysis) rclatiw to the 
research agenda discussed herein, but technical detai ls are nOI featured al the high le\'el of this 
discussion. Some key wncepts are low-dimensional representation of formally high-dimensional 
data sets, low C<lmplexity algorithms that arc much less cxpensi \'e in storage requirements and 
nllUJ ing time Ihan tradilional algorilhms (e\'.:n slIblinear in dala set size) while mainlaining 
sufficient accuracy, and once-through streanling of the input data scI. 

Data-t nablcd science has been called "fourth paradigm" in apposition to thc historically 
dominant paradigms for scientific discO\'ery, engineering design, and decisioll snpport of IheQry 
and experiment, and the recently rapidly developed ''third paradigm" ofsimulal iOIl. TIlCOry and 
simulation are based on physical models Ihat C3f] be mathcmatized. Expcrimentat ioll is model­
driven. In contrast, some data- intcnsiyc approaches effecti \·cly predict outputs of a system 
wirham the requirement of models representing the dynamics of the system. which makes these 
approaches very inleresting for fronli er science. Of course, there are deep mathenlalical models 
underlying discovery techniques for d1ta sets that make th is predictive power possiblc, ewn if 
the system dynamics are unknown. Such approaches depend upon large volumes of data (system 
history) and are increasingly intt'T"Csling as humans collect data from senson!, satellites, 
sophislicated experiments, and records of their own act ivily. TIle slatislical and mathematical 
lools underlying machine learning and dimension reduction techniques of all kinds must be 
percolated into low~r levels oflhe cwTicuhull, to train data profi cient scientists in anticipation of 
a profound shill of research resources inlo data-enabled science in the future. 

The value of d:lla on a "pcr b)tc" basis often incrcases with the availabil ity of more data for 
context. Ovcrlays of different types of data (e.g. C<l m:lation of multip le measurements in 
experiments, of multiple diagnostics in medicine, or of mull iple indices in geographical 
infonnation systems) offer insights thai are nOI available from tile same data cOllsidered 
separalely. Discrete malhematics Can play a key role hcre, in tenus of infOmlatioll relricval and 
associali ve databases. 

\3 

Changing the Conduct of Science in the Information Age June 28, 2011 

49 Baker 



   

   

              
            

            
              

                
              

            
             

             
             
           

               
            
                

               
                 
                

             
              

  

             
            

              
                 

             
              
                
              
                

            
               

     

          
            

             
           
              
            

 

               
               

 

              
            

            
              

                
              

            
               

             
             
           

               
            
                

              
                   
                

             
              

  

              
            

              
                 

             
              
                
              
                

            
               

     

          
            

             
           
              
            

 

               
              

 

Data-enabled science is inten:sting on its OWI1, but even more il1tL'Testing in combination with 
simulatioll-el1abled science. The laner is limited by modelil1g errors (amollg other limitat ions) 
while data-based methods arc limited by observational or e:o.:perimental error (among other 
limitations), which can b;; profound in leading edge sei;;ntific experiments in which the signals 
of interest are weak or rare in the midst of noise. Together, through methods like data 
ass imilat ion and parameter invers ion, these tWO ugly parents can have a beautiful child, the 
limitat ions of each being reduced by b.::ing taken together. Moreover, real-time data-enabled 
scientific discovery can be aided by the simulation informing the experimental or observational 
process aoout where to concentrate effort (optimal sensor placement). This s}T1t:Tgism is rarely 
e:o.:ploitcd tod.,y because of the two worlds, are discolmeCled in temlS of practitioners, software­
hardwafl) interfaces, and the compute-intel1sivcness of doing the assimilation and steering. 

A major challenge for mathematical scientists is to winnow massive data sets and represent them 
sparsely, for eomput ing and storage purposes. Sometimes, loss in compression cannot bc 
tolerated for scientific or Icgal reasons, but raw large-scale data scts can often be reduced by 
order.s of magnitude in bulk without negative implications and there is a premium OIl perfonning 
this reduction and working in the '"right basis" for many reasons, as we become deluged by data. 
The acquisit ion cost of large.scale computers is in the data memory and the oper3tion cost of 
targe-scale machines is in moving the data around, not manipulating it arithmetical1y. Moreo\"~r, 
VO rates lag processing rates, putting an operational premium on minimizing 110 beyond the 
budgetary premiums. 

111e Division of ~lathcmat i cal Scienees hali natural paMnCTS beyond the scient ific divisions of the 
MPS DiT\":ctorat~, in other parts of the foundation and beyond. Other rescarch-intensh'e 
agencies (e.g., DoD, ooE, NASA, NIH, N1ST) and mission ag~neies (e.g. , AHRQ, BEA, BJS, 
BLS, BTS, Census, EIA, EPA, IRS, NASS, NCES, NCBS, OMS) are awash in data Ihat Ileed to 
be gathered. cUTJted archived,. tumed imo useful infonnmion. and applied. Needed from OMS 
are abstractions, algorithms, and soflware tools to: characterize and improve data quality, to trade 
oIT cost and data quality, to link multiple databases, and to analyle. In some instances, pri V3Cy 
and confidentiality are major eoncerns. OMS rescarchers can contribute to tools to hlUld1e Icgaey 
data and ncw forms of data (audio, images, \'ideo). DlI.lS researchers must also be IIwolved in 
developing mcans of quantifying uncertainty, and means of cOlllmunicating lUlcertainty to the 
public and to policy makers. The mathematics of risk analysis 11IuSI be devclopcd to accOlllpany 
the emergence of d1ta·enabled science 

While considerable opportunities pres~'Ilt themselves for matllematicilUls and stat ist icians to 
embed themselves in applications, long.term curiosi ty_driven research in data science must also 
be encouraged. History shows that the fruits of curiosity-driven T"L'Search in the mathcmatical 
sciences are plucked by applications, at unpredictable intervals following their ill\·ention. 
Outside of the scientific realm, infomlation management has grown to bo:: a $100 Billion 
busiuess, so spillofl"s from data·enabled discovery cau lead to huge nll.hiplier.s in 
competitiveness. 

In summary, mathematics and statistics lie at the intersection of all quanti tative fields engaged in 
DES, through the powcr of their abstractions, and they swilUy convey breakthroughs in one field 
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into related ones. Individuals in DMS are often involved with the frontiers of DES both 
internally to the discipline and in interdisciplinary contexts. Growing numbers in the 
mathematical sciences community wish to be involved in DES problems, which has led to some 
of the most innovative, prize-winning developments in mathematics and statistics in recent years 
and some of the greatest fun. Impediments to be addressed by MPSAC could include the 
difficulty of securing postdoctoral funding (especially in statistics) and limited opportunities for 
interdisciplinary engagements as co-PIs on project proposals to NSF, since projects that are truly 
collaborative may present particular challenges to review panels. 

3.5 Physics 

Large data sets are a familiar component of physics research. In recent years, LIGO has acquired 
about two petabytes of data. With the Large Hadron Collider (LHC) reaching interesting beam 
energies, particle physics is preparing for the impending data tsunami which will generate about 
700 MB of data per second. And this does not include simulated data, which could easily double 
or triple the data rate. 

These big experiments are not the only data-enabled physics, however. The ability to simulate 
complex physical systems is also advancing rapidly. The output of these simulations will grow in 
size and complexity as more physics is included in the simulations. Moreover, single 
investigator experimental programs can easily acquire large amounts of data and many would 
benefit from better algorithm, software, and even data sharing formats. 

The scientific pay-off of these data-intensive projects is bounded by the ability to process and 
analyze the data at the rate they are acquired. 

Case Study I: Gravitational-wave Astronomy (LIGO) 

The scientific pay-off of LIGO is bounded by the ability to process and analyze the data at the 
rate they are acquired. Over the past decade, LIGO has acquired 2 petabytes of data. The 
scientific collaboration adopted an hierarchical grid model for data storage and computation in 
which raw data is archived in Tier-O data centers and centrally aggregated to a Tier 1 from which 
reduced data is moved to Tier-2 (regional compute centers) and Tier-3 (university compute 
centers). A similar structure has been adopted by the LHC experiments. 

Over the next five years, the Advanced LIGO instrumentats (aLi GO) will be installed and begin 
operating. LIGO has partnered with Virgo, a French-Italian gravitational-wave detector project, 
and with GEO, a British-German detector project, to form a global network of gravitational­
wave detectors. The goals of aLIGO are to test relativistic gravity and to develop gravitational­
wave detection as an astronomical probe. aLIGO operations will span the transition from rare 
detections to routine astronomical observations. In stable operations, aLIGO will generate about 
1 PB of raw data per year which needs to be replicated between the geographically distributed 
observatories and the compute centers at the same rate as it is acquired. A number of processed 
data products are planned including reduced data sets for scientific analysis, event databases, and 
astronomical alerts when transient events are identified. Robust online and omine data handling 
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and analysis capabilities are required. Pipelines generating transient alerts & data quality 
infonnation within seconds of data acquisition are also needed. Careful attention must be paid to 
interfaces between control/diagnostic systems, data acquisition systems, and processing systems 
to ensure robust operations of the low-latency system. The data will be re-processed omine for 
transients including deeper searches, enhanced data quality generation, searches for continuous 
and stochastic signals, parameter estimation, and simulations. 

To achieve the science goals, four aspects of data processing and analysis must be supported: 1) 
storage and compute resources including both hardware and personnel, 2) development, 
enhancement and support of middleware and services including data discovery and replication, 
database of events and data quality, authentication/authorization, monitoring, 3) development, 
enhancement and support of software to provide access and core algorithms, 4) development and 
prototyping algorithms and pipelines to identify signals to identify correlations with the 
environment and auxiliary systems. This requires support of discipline specific scientists, 
mathematicians, statisticians, and computational scientists. 

Case Study II: Large Hadron Collider 

On March 30, 2010, with the first 7 TeV proton-proton collisions at the LHC, high energy 
physics entered an era in which data sets are expected to grow to more than 10 PB/year within a 
few years. Particle physicists are now, in effect, running two sets of experiments simultaneously: 
one to search for new physics that could change our view of nature and the other to test whether 
or not the newly created cyber infrastructure, the Worldwide LHC Computing Grid (WLCG), 
works effectively under highly stressed real-world situations. The goal of the WLCG is to 
provide physicists controled, and timely, access to approximately 100,000 processors, housed in 
170 computer centers in 40 countries. 

In a typical analysis in high energy physics, physicists compare observations with background 
models that have been validated using real data. In addition, the same data may be compared 
with various models of potential new physics. These signal models typically depend on several 
parameters. For example, the simplest supersymmetric (SUSY) models require the specification 
of 5 to 6 parameters, B, in order to define the models completely and thereby allow for prediction 
of the expected signal s ~ f( B). In dealing with such models, physicists are faced with at least two 
problems: 1) the functionf( B) is typically not known explcitly, but only implicitly through semi­
analytical calculations that involve simulation, and 2) to test such models effectively, analyses 
need to be optimized at multiple parameter points B. This requires the simulation, at each 
parameter point, of hundreds of thousands to millions of proton-proton collision events. In the 
simplest cases, each of these optimized analyses would be applied to the real data yielding N 
events that satisfy certain cuts. Even for a simple count-based analysis, such as we are 
describing, which reduces the raw data to a set of (correlated) counts {N} and the associated set 
of background estimates {B}, the computational burden of perfonning scientific inference for a 
multi-dimensonal parameter B is very large, especially if Bayesian methods are used. Moreover, 
the entire procedure, in principle, must be repeated for every class of models to be tested. At 
present the software codes to execute such analyses are developed by teams of physicists in ways 
that may be not be optimal in tenns of resources needed and the timeliness of results. New 
algorithms will be needed to scale up, or more likely replace, existing practice. 
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Spedfu; Need~' of tile PhJ'sics Commlllli(" 

A. Need for date storage and complltational faCilities: The experimental gravitational-wave and 
particle physics communities have de\'eloped an hiernrchical grid model for data storage and 
computation in which raw data is archh'ed in Tier-O data centers aud reduced data is moved to 
Ti(''1"-2 (regional compute centers) and Ticr-) (unh'ersity compute centcrs). 11lis hierurchical 
distribution of data and computing resources is an extrcmely effective way of insuring thc data 
can be easily accessed and used by the physicists. It is clear that a similar hiernrchical approach 
is necd.:.>d to support the simulation community which r.:quires a runge of computational facil ities 
that allow rapid prototyping and debugging in addition to the larger compute centers which 
provide the resources for high-I\.'Solution and large scale simulations. Ideally, there would be a 
sceT1lless migration from rapid prototyping to the execution of a large-scale analysis. 111is is not 
the case at present. 

B. Need for Sllpport personnel: The prQ(:css ing and analysis of large data sets requires software 
and ser .... ic.:;s to al low scientists to extract the maximum scienti fic pay-off. Among the activities 
that need to be supported are authenticat iOll and authorization servic(.""S, help desk support, 
sof\war<: build and test faciliti es, monitoring of storage and computational 1"C!;0urccs, data 
repl ication and movemcnt, data and metadata capture services, data mining tools and 
visualization. To dclivcr high qn:llity, enabling products rcquil\.>S a combination of discipline 
specific scientis1s, software engineers, and progranllllers. For large e),;pcrimenlS." a reasonable 
mle of thumb is that suppon for these activities requires about 10% of the operating costs of the 
efl'ort. It is imponant to note that the full release of data which have been processed to remove 
artifacts goes b~yond this scope and llIay n:quire Hll additional 10% of the opcrruing eosu> to 
support . 

C. Need for $lIpporr of interdi$ciplinary research activities: Algorithm and application 
development needs vary according to the specific activity b.:ing undertaken. With the cxplosion 
of data from experiments and simulat ions, there is an urgent need ror collaborations between 
physicists, mathl"lllaticians, statisticians and computer scientists. 
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Appendix A - Natiuna l Study Gru ups Face the Ollta Fluud 

Several national study groups have issued r.::ports on the urgency of establishing scientific and 
educational progmms to face the data nood ehal1eng.::s. including: 
I. National Academie~ report: Blls of Power: Issues in Global Access /0 Scientific Da/a. (1997) 

downloaded from hIlP:flwww.nap.cdu/catalog.php?l\.X'ord id- 5504 
2. NSF T~port: K'lowledge Lost in In/orlllation: Research Directions [or Digital Libraries. (2003) 

downloaded from http ;lIwww.~j~.pill.edu/-dl\\"kshopln.Port.pdr 

3. NSF T!!port: C"berinfrastm c/urefor Environmental Research and Education, (2003) 
down loaded from http://www.ncar. ucar.edulc\'herfc\"berr~port.pdf 

4. NSF Atkin~ Report: Revoilitioni:ing Science & Engineering Throllgh Cyberinfraslmct llre: 
Report of the VSF Bille-Ribbon Advisory Pane! on Cyberinfrastl1lctllre. (2003) downloaded 
from Intp·/lw\\'\v.nsfgov/od/ocilrevorts latkins.pdf 

5. NSI3 (N"lional Science J3<:,ard) report: Long.lived Digital Data Collections: Enabling 
Re~·etl/·ch and Educalion in the 21st Cen/IaY. (2005) downloaded from 
hltp:/lwww.n, f.gov/mhldocl lmo:-nts/200' /LLDDC report .pdf 

6. NSF report with the Computing Research Association: CyberinfrwlnlClUrefOl" Edllcatian and 
Learningfar the Fu ture: A Vi$ion and Re$earch Agenda, (200S) downlo"ded fmm 
http : //www.cm.org!rcpo"slcvb~rinlraslmcl llrc. pdf 

7, NSF r.::pon: The Role of Academic Ubraries in the Digital Data Universe. (2006) downloaded 
from http://www.arl.oT!!.ibm- doc/digd.1t.IT t.r>df 

8. National Research Council. National Academ ies Press report: Learning to Think Spo/ially. 
(2006) downloaded from hnp:llwww.nap.cdu/calalog.php?record id= 110 19 

9. NSF r~port : Cyberinfrastnlc/llre Vision for 21s1 Century Discovery. (2007) downloaded from 
hllp : flwww.n~f.go"/odloc ;/ei v5 .pdf 

10. JISCfNSF Workshop report on Data-Driven Science & Repositories (2007) downloaded from 
h!tp ; lIw\\"w.s i ~,pitl.eduf-rcp\\'hhopINSF· J!SC-rcport . [ldr 

I I . OOE (Th:panment of Ent"'Tgy) report: Visllu!i:a/ion and Knowledge Discovery: Report from 
the DOEiASCR Workshop on Visual AnlIly$is and Data Exploration al Extreme Scale. (2007) 
downloaded from hllp;lIwww.sc.doc . govll\S~"'T/I'rognlln1>oclirnenL~lDoc~IDOE-V i Sl~l!ization· 
Report-2007,[!df 

12. OOE n::port :Mathl!maticsfor AnalyJis ofPe/ascale Data Workshop Report, (2008) 
downloaded fmlll 
hllp:/lwww.sc.d<x.gov/asqll.rol!ram [)(>cnrnen tsfl )oc ~IPct'l scale Data Work.~hopRc[!Ort. pdf 

13. NSTC Interagency Working Group on Digital Data report: Hamessing the POlrerofDigllal 
Data far Science and Society. (2009) dOlmloadcd from 
http ; /lw\\"w.nitrd.gov/ahoutlHam~s~ing Power Weh.pdf 

14. National Academies r~'Port: Ensllring the Integrity. Accessibility. and Stewardship of 
Research Daw in the Digi/al Age. (2009) downloaded from 
http·/lwww.nar.edulp lalog.[!hr?record id- 12615 
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